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Memòria presentada per as-
pirar al grau de Doctor en
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Introduction

At the beginning of the last century, theoretical physics was at a major turning point in its
history. With the recent discovery of the atom, researchers observed phenomena that could
not be explained by Newton’s classical mechanics and Maxwell’s laws. This mathematical
framework was not only insufficient to describe the observed phenomena, but even more so, it
led to inconsistencies. Indeed, Heisenberg showed that the contradictions between theory and
experience were mainly due to the fact that the commutative context of classical physics was
no longer sufficient to explain theoretically the observed phenomena and that a mathematical
context involving matrix algebras would have to be considered. Matrix algebras have an un-
fortunate tendency not to be commutative. Just as time is not reversible... Thus, the famous
quantum physics of the 20th century were born. However, let the reader be reassured, this
thesis is not dealing with that!
In fact, Heisenberg’s idea also gave birth to the study of this new mathematical framework:
Operator algebras. The eponymous algebras introduced by von Neumann were considered
first: a closed ∗-sub-algebra of B(H) for the weak topology of operators, where H is a sepa-
rable Banach space of infinite dimension. Then, in the 40’s, Gelfand and Naimark discovered
that using few axioms, it was possible to abstractly characterize ∗-subalgebras of B(H) closed
for the norm, called C∗-algebras. Let us note that the latter contains in particular the von Neu-
mann algebras.
As a new object had appeared, the question of its study was quickly raised. Concrete exam-
ples considered were, besides the abovementioned von Neumann algebras, the finite dimen-
sional C∗-algebras, that are direct sums of matrix algebras of different sizes over the complex
numbers. Commutative C∗-algebras are also nicely characterized. There is categorical equiv-
alence between the category of compact Hausdorff spaces and the category of commutative
unital C∗-algebras. For this reason, the theory of C∗-algebras is sometimes referred to as the
noncommutative topology.
Among the first non-trivial examples, we find Glimm’s analysis of UHF algebras at the very
end of the 50’s (see [33]). These C∗-algebras of infinite dimension, unital and simple, are
constructed from sequences of algebras of finite dimension. Moreover, Glimm provided a
complete invariant for these algebras, namely, the supernatural number obtained from the se-
quence of algebras which defines the UHF -which turns out to be nothing but the group K0

in disguise-. Then, in the early 70’s, Bratteli considered a more general class: AF algebras
(see [10]). As mentioned, they contain the UHF algebras, and they are also constructed from
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sequences of finite dimension algebras. The difference is that AF algebras need not be simple.
In 1976, the first big breakthrough happened. Using Brattelli diagrams and the K0-group,
Elliott was able to find a complete invariant for the class of AF algebras, using the now
famous intertwining technique. More precisely, he proved that the scaled ordered group
(K0(A),K0(A)+, Γ(A)) classifies all AF algebras (see [24]).
This classification was later extended to other classes of algebras. Prominent examples are the
AI and AT algebras. Those are built as inductive limits of interval and circle algebras, that is,
algebras of the form C([0, 1])⊗ A or C(T)⊗ A, respectively, where A is any finite dimensional
C∗-algebra. Further on, in 1989, Elliott classified the class of AT algebras of real rank zero,
by means of the scaled ordered group K∗ := K0 ⊕ K1. Around that time, he proposed two
conjectures:
(1) The scaled ordered group (K∗(A),K∗(A)+,Σ(A)) is a complete invariant for separable nu-
clear C∗-algebra of real rank zero and stable rank one.
(2) The Elliot invariant Ell(A) := ((K0(A),K0(A)+,Γ(A)),K1(A),T (A), rA), where T (A) is the
tracial simplex on A and rA a pairing map between T (A) and K0(A), is a complete invariant for
simple, separable, nuclear C∗-algebras.
From that point on, the problem of classification of C∗-algebras by a functorial complete in-
variant, often referred to as the Elliott classification program, was definitely launched. That is
to say, the aim to find a functor F from the category of C∗-algebras to a suitable category, that
would capture enough information on C∗-algebras such that for any two A, B ∈ C∗, if there
exists α : F (A) ≃ F (B) in this suitable category, then there exists a ∗-isomorphism ϕ : A ≃ B
and moreover F (ϕ) = α.
The classification program has provided tremendous results so far, mostly in the simple case.
At first, even though the conjecture seemed huge, many subclasses of simple separable nu-
clear C∗-algebras were classified by the Elliott invariant or by K∗. One of the first results was
obtained using K∗, cited earlier (see e.g [25], [26]), that classifies a certain subclass of AH
algebras of real rank zero (containing AT and AI algebra of real rank zero), and morphisms
of AT algebras of real rank zero. We recall that an AH algebra is an inductive limit of direct
sums of building blocks of the form PMn(C(X))P, where X is a compact metric space and P
a projection in Mn(C(X)). Different subclasses, such as AHd were subsequently introduced.
Further, Elliott, Gong, Pasnicu, Li, Lin worked on the original Elliott invariant, classifying a
restricted subclass of simple C∗-algebras (see e.g [26],[42], [53]), which led to the classifica-
tion of simple AH algebras with slow dimension growth.
The conjecture would still hold so far and actually, even more classes of C∗-algebras appeared
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to fit in: Kirchberg and Phillips established a remarkable result by classifying the class of
purely infinite, simple, unital, nuclear C∗-algebras, now commonly known as Kirchberg al-
gebras, by means of K-Theory, under the assumption of the Universal Coefficient Theorem
(UCT) (see e.g [56], [46]).
It was not until before the early 2000’s that the first counter-examples to the conjecture came
up. Nevertheless, even though Rørdam followed by Toms constructed examples that would re-
fute the Elliott conjecture (see [66] and [77]), only a small amount of additional information to
the Elliott invariant such as the real rank or the stable rank of the C∗-algebra was needed to ‘re-
store’the conjecture. A few years later though, Toms came out with a major counter-example
that would refute the original conjecture (see [78]). We will speak about this construction in
a short while. Let us point out that, after the work of many hands, the classification program
is now complete and has provided a successful classification of simple, separable, unital, nu-
clear, Z-stable C∗-algebras satisfying the UCT by the original Elliott invariant. (See, among
many others, [36], [27], and [76].)
On the other hand, in the non simple case, even in the real rank zero case, results were far
from satisfactory. For that matter, something more was needed. Out of this came a list of
invariants, in increasing degree of complexity, aiming to ‘merge’ the original Elliott invariant
together with the total K-Theory, an augmented version of K∗, to get a new invariant contain-
ing even more information about these algebras, especially in the non-simple case (see e.g
[42], [35]). This year, it has finally been proved that the most complete invariant, termed Inv,
is a complete invariant for AH algebras of no dimension growth with the ideal property (see
[34], [35]).
In the meantime, another approach using the so-called Cuntz semigroup, was also consid-
ered. This object was first introduced by Cuntz in [22] and is constructed in a similar way
as the Murray-von Neumann semigroup (that eventually yields to K0 applying the Grothen-
dieck construction), but considering positive elements instead of projections only. At first,
this semigroup did not get much attention regarding the classification program. Together with
the fact that its computation was rather complicated and that the original Cuntz semigroup did
not preserve inductive limits, it did not seem to be a promising candidate.
However, in 2008, Toms provided a construction of two simple separable nuclear AH alge-
bras that agree on the Elliott invariant, but fail to be isomorphic (see [78]). The tool used to
distinguish the C∗-algebras was the Cuntz semigroup. As mentioned above, this was a ma-
jor counter-example to the Elliott conjecture, because it was the first time that the conjecture
could not be repaired by slightly modifying the Elliott invariant. In fact, with this example,

p. 9



Toms showed that the invariant would need to be extended not only with more K-Theoretical
data, or noncommutative dimensional assumptions such as the real or stable ranks, but at least
it should also include the Cuntz semigroup.
More or less at the same time, a completed version of the Cuntz semigroup that preserved in-
ductive limits was constructed (see [21], [4]). Also, some computations were done (see [62],
[75], [3]) and it was observed that the Cuntz semigroup entirely captures the lattice of ideals
of the algebra (see [4], [20]). It was proved that, for unital, simple, separable, nuclear and
Z-stable C∗-algebras, one could functorially recover the original Elliott invariant using the
Cuntz semigroup of any such algebra tensored with C(T) (see [2]). Therefore, for the largest
agreeable class that could be classified by the Elliott invariant, the latter and the Cuntz semi-
group contain the same information.
Consequently, in the recent years, this semigroup has gained interest and has been extensively
studied as it seems a promising tool for classification of non-simple C∗-algebras. Indeed,
classification results of non-simple C∗-algebras by means of the Cuntz semigroup quickly ap-
peared. This work, mainly done by Robert and Santiago (see [63], [70], [19]) gives a complete
classification of non-simple classes of C∗-algebras, such as NCCW 1 complexes with trivial
K1 or AI algebras and more as they both classify homomorphisms by means of Cu or an ex-
tended version, written Cu∼; see [18] [64], [63], [70].
The main drawback of this approach, as implicitly stated earlier, is that the Cuntz semigroup
alone does not capture the K1 information of the C∗-algebras. Thus, it would seem appropriate
to create a unifying invariant that would ‘merge’ the information of the Cuntz semigroup and
the information of the K-Theory. This is what this thesis is aiming for.

Structure of the thesis

In the first chapter, we introduce as concisely as possible notions about C∗-algebras and K-
Theory, Category Theory, and the Cuntz semigroup.

In the second chapter, we introduce our invariant: the Cu1-semigroup. We focus on stably
finite algebras, and more concretely on the stable rank one case. On the one hand, this class
is pleasantly large and includes prominent examples, such as the ones obtained by Toms al-
luded to above. Further, if A is a simple, unital, stably finite that absorbs the Jiang-Su algebra
Z, then A has stable rank one (see [67, Theorem 6.7]). Among non-simple algebras, all AF
and all AI algebras fall into the class of C∗-algebras of stable rank one, as well as the one-
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dimensional non-commutative CW-complexes and the examples studied in [19]. On the other
hand, for algebras of stable rank one Cuntz subequivalence of positive elements admits a nicer
description easier to work with.
We first prove that this semigroup satisfies the Cuntz axioms to then define it in a categorical
context. That is, we define a functor Cu1 : C∗ −→ Cu∼, where Cu∼ is a suitable category
alike as the category Cu. In fact, Cu is a full subcategory of Cu∼ and we prove that Cu1 is a
continuous functor. We finally describe the positive and compact elements of our invariant.

In the third chapter, we first prove that elements of Cu1(A) can be parametrized by the ideal
lattice of A. Then, we introduce the notion of ideal for an abstract Cu∼-semigroup, and we
show that an ideal I of a Cu∼-semigroup is again a Cu∼-semigroup. Also, we consider quo-
tients by ideals and prove that the set of ideals of a Cu∼-semigroup S is a complete lattice,
isomorphic to the complete lattice of ideals of the underlying Cu-semigroup of positive ele-
ments S +. Further, we prove that Cu1(A/I) ≃ Cu1(A)/Cu1(I) as Cu∼-semigroups.
Moreover, under mild hypotheses, the maximal elements of a Cu∼-semigroup S turn out to
form an abelian group, that we write S max. In the case of Cu1(A), this abelian group is isomor-
phic to K1(A).
All of the above allows us to functorially capture the information contained in Cu(I),K1(I)
for any (closed two-sided) ideal I of a C∗-algebra A (and a fortiori, of A itself). We end the
chapter with some results about exact sequences in the category Cu∼: we first define this no-
tion and then prove the functor Cu1 preserves short exact sequences of ideals. Also, we link
Cu,K1 and Cu1 in a short split-exact sequence of the form 0 −→ Cu −→ Cu1 −→ K1 −→ 0.

In the fourth chapter, we analyse situations in which Cu1(A) is completely determined by
Cu(A) and K1(A), such as the simple case. We also compute Cu1(A) for some non-simple
C∗-algebras. In the process, we recall some well-known classes of C∗-algebras and their prop-
erties, such as AF, AT, AI or NCCW 1-complexes.

In the fifth chapter, we introduce the notion of recovering functors. Indeed, we put a categor-
ical context on how the information captured by some invariant can be retrieved by another
invariant. A fortiori, how classification results can be transferred from one invariant to the
other. We then apply the above to recover K∗ from Cu1 and reinterpret some already known
classification results by means of Cu1.
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The sixth chapter is of a more technical nature. We focus our interest on Cu-semigroups
of the form Lsc(X,N), where X is a compact metric space of covering dimension 1. In par-
ticular, we consider useful features such as a countable basis, a metric and a semimetric on
HomCu(S ,T ) for S ,T ∈ Cu of the form cited above. We finally use these tools to prove an
approximate intertwining theorem adapted to specific inductive limits in the category Cu.

In the seventh chapter, we build an example of two C∗-algebras distinguished by Cu1. That
is, we build two NCCW 1 algebras A, B that are separable, unital, of stable rank one such that
Cu(A) ≃ Cu(B) (which implies K0(A) ≃ K0(B)) and K1(A) ≃ K1(B), but Cu1(A) ; Cu1(B)
and hence A ; B. This confirms that our new invariant is bringing additional information
regarding the classification of C∗-algebras, which is very promising for future classification
results in the non-simple, non trivial K1 case.

The eighth chapter could be seen as an opening chapter towards a future classification by
means of Cu1. We mention that this work has been done while visiting Professor L. Robert at
the University of Louisiana, Lafayette. We first classify unitary elements of finite dimensional
C∗-algebras by means of Cu to then (partially) extend this result to any AF-algebra. Then, by
constructing two examples in C[0, 1] ⊗ M2∞ and Z, we show that Cu is no longer sufficient
to classify unitary elements and indeed some K1 information needs to be added to pursue the
classification of unitary elements. An opening line of research is to keep on investigating
on this classification, using the Cu1-semigroup instead of the Cu-semigroup and hopefully
being able to classify unitary elements of more C∗-algebras such as NCCW 1 algebras with
K1-obstructions.
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Je tiens bien évidemment à remercier de tout mon coeur ma famille et en particulier mes
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votre façon, vous avez toujours été un modèle de vie pour moi. Je suis fier et heureux d’être
votre petit frère. Je pense très fort au reste de ma famille, à mes grands-parents, Santa, Mamie,
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Quiero agradeceros muchı́simo por la aventura que han sido estos años. Descubrı́ el mundo
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oportunidad de caminar en el cielo català amb vosaltres ! Este ya, ni se puede medir todo lo
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aventura matemática y de vida muy enriquecedoras.

Je m’arrête donc sur ces dernières lignes. Elles sont pour toi ma Chachou. Le plus grand
des mercis pour partager ta vie avec moi, toutes ces aventures, ces moments de bonheur et
tout cet amour. Je ne te le dirai jamais assez je crois, alors merci encore mamour.

Una abraçada a tots,

Laurent

p. 14



Contents

Index 15

1 Preliminaries 17
1.1 Introduction to C∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Introduction to Category Theory . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 The Cuntz semigroup of a C∗-algebra . . . . . . . . . . . . . . . . . . . . . 29
1.4 Traces and Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 The Cu1 semigroup 35
2.1 Definition of the invariant and its first properties . . . . . . . . . . . . . . . . 35
2.2 A pre-completed version of Cu1: W1 . . . . . . . . . . . . . . . . . . . . . . 43
2.3 The functor Cu1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4 Algebraic Cu∼-semigroups and PoM∼-completion . . . . . . . . . . . . . . . 56

3 The structure of the Cu1-semigroup 59
3.1 Structure of the Cu1-semigroup . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Ideal structure in Cu∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Quotients in Cu∼ and exactness of the functor Cu1 . . . . . . . . . . . . . . . 74

4 Computation of Cu1-semigroups 83
4.1 The simple case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 The case of no K1-obstructions . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 AI and AT algebras: The case of C([0, 1]) and C(T) . . . . . . . . . . . . . . 85
4.4 The NCCW 1 complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Relation of Cu1 with existing K-Theoretical invariants 93
5.1 Classification Machinery - Existing work . . . . . . . . . . . . . . . . . . . 93

15



CONTENTS

5.2 Recovering the K∗ invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Intertwinings in the category Cu 103
6.1 Piecewise characteristic functions . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Cu-metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Intertwinings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 The Evans-Kishimoto construction . . . . . . . . . . . . . . . . . . . . . . . 122

7 A concrete use of Cu1 in the classification of certain NCCW 1 algebras 129
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 The example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 Classification of unitary elements of certain C∗-algebras 139
8.1 Classification of unitary elements of AF algebras . . . . . . . . . . . . . . . 141
8.2 An example in C[0, 1] ⊗ M2∞ . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3 An example in the Jiang-Su algebra . . . . . . . . . . . . . . . . . . . . . . 148

p. 16



Chapter 1

Preliminaries

1.1 Introduction to C∗-algebras

1.1.1. Let us here give some general background on C∗-algebras to introduce our work. It will
be far from complete, as we cannot restate everything, but we will be as concise as possible.
For a more detailed background the reader is refered to, for example, [48], [23], [9].

Definition 1.1.2. A C∗-algebra A is an algebra over C with an involution ∗ : A −→ A, and
equipped with an algebra norm ∥ ∥, such that A is a Banach space and such that A satisfies the
C∗-property: ∥aa∗∥ = ∥a∥2 for any a ∈ A. An immediate consequence of this is the following:
for any a ∈ A, we have ∥a∥ = ∥a∗∥.
A C∗-algebra A is called unital, if it has a multiplicative unit 1A. As not all C∗-algebras are
unital, we will see later that we can consider an ‘approximation of a unit’and also a process to
unitize A.
A ∗-homomorphism ϕ : A −→ B between two C∗-algebras A and B is a linear multiplicative
map that is compatible with the involution. If A and B are unital and moreover ϕ(1A) = 1B,
we then say that ϕ is a unital ∗-homomorphism.
We say A is separable if it contains a countable dense subset.

1.1.3. (C∗-subalgebras - Ideals)
Let A be a C∗-algebra. A subalgebra B ⊆ A closed under involution and norm is called a
C∗-subalgebra of A.
An ideal I of A is always a closed two-sided ideal (unless explicitly mentioned). We can also
naturally define a quotient A/I equipped with a quotient norm given by ∥x + I∥ := inf

z∈I
∥x + z∥.

Both I and A/I are C∗-algebras.
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1.1. Introduction to C∗-algebras

Let us now make precise the structure of ideals of a C∗-algebra A. We write Lat(A) := {closed
two-sided ideals of A}. As for Rings, (Lat(A),⊆) is a complete lattice where, for any two
I, J ∈ Lat(A), we define I ∧ J := I ∩ J and I ∨ J := I + J.
Any ∗-homomorphism ϕ is continuous and of norm 1. Moreover, ϕ is injective if and only if
it is isometric. Also, ker ϕ is an ideal of A. Finally, if A is unital and ϕ is surjective, then ϕ is
unital. A fortiori, B has a unit 1B := ϕ(1A).

1.1.4. (Adjoining a unit)
Let A be an algebra. The (forced) unitization of A is the algebra A∼ := (A × C,+, .) where
(x, λ).(y, µ) := (xy + λy + µx, λµ) with unit 1A∼ := (0, 1). Note that A sits as an ideal of
A∼ through the canonical embedding A ↪→ A∼ that sends a 7−→ (a, 0). Besides, we have
A∼/A ≃ C.
If A is already unital, then A∼ ≃ A ⊕ C, where A ⊕ C is a unital C∗-algebra, with component-
wise operations and 1 := (1A, 1C). If A is not unital, A∼ is the smallest unital C∗-algebra that
contains A as an ideal.
Finally, for any C∗ morphism ϕ : A −→ B, there exists a (unique) canonical unital C∗ mor-
phism, that we write ϕ∼ such that the following commutes:

A

��

φ // B

��
A∼

φ∼
// B∼

Definition 1.1.5. Let A be a unital C∗-algebra and let a ∈ A. We write Gl(A) the set of
invertible elements of A. The spectrum of a (with respect to A) is defined as sp(a) := {λ ∈ C |
a − λ1A is invertible in A}. If A is not unital, we define sp(a) = spA∼(a).
An element x of A is called:
(i) normal if xx∗ = x∗x,
(ii) self-adjoint if x∗ = x, that is, x is normal and sp x ⊆ R . We write Asa to denote the set of
self-adjoint elements.
(iii) positive if it is normal and sp x ⊆ R+. We write A+ to denote the set of positive elements.
(iv) a projection if x = x∗ = x2. We write P(A) to denote the set of projections.
(v) a partial isometry if x∗x = p for some p ∈ P(A). If x∗x = 1A, then x is an isometry.
(vi) a unitary if xx∗ = x∗x = 1A. We writeU(A) to denote the set of unitary elements.
Note that all of those above are normal, except for partial isometries. Note that P(A) ⊆ A+ ⊆
Asa and thatU(A) ⊆ Gl(A). Finally, we have A+ = {x∗x, x ∈ A}. Also, for two elements a, b in
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1.1. Introduction to C∗-algebras

A, we say that a ≤ b in A if (b − a) ∈ A+.
We will see that some of the above elements (and more particularly their equivalence classes
under suitable relations) play a key role as far as invariants (for instance K-theory, Cuntz
semigroup) and classification of C∗-algebras are concerned.

1.1.6. (Approximate units - Hereditary subalgebras - Full and strictly positive elements)
As said before, not every C∗-algebra A has a unit and even if we have seen a way to unitize
it, sometimes we have to work in a non-unital context. Then the notion of approximate units
comes into place. An approximate unit for a C∗-algebra A is an (upward-directed) net of
positive elements in the closed unit ball of A, (eλ)λ∈Λ, such that for any x ∈ A, a = lim

λ
aeλ.

Equivalently, a = lim
λ

eλa.
Every C∗-algebra has an approximate unit, consisting of {a ∈ A+, ∥a∥ < 1}. We say that A
is σ-unital if it admits a countable approximate unit. In fact, if A is separable, it admits a
countable approximate unit.
A C∗ subalgebra B of A is called hereditary if for any a ≤ b, with a ∈ A and b ∈ B, then a ∈ B.
For any subset S ⊆ A, we call her(S ) the smallest hereditary subalgebra of A containing S . We
write Her(A) the set of all hereditary subalgebras of A. Observe that any ideal is an hereditary
subalgebra, that is, Lat(A) ⊆ Her(A).
For any a ∈ A+, we have her a = aAa. Observe that Ia := AaA, the ideal generated by a,
contains her a. A corner of A is any hereditary subalgebra of A of the form pAp = pAp,
where p is a projection of A. We say that a hereditary subalgebra is full if it is not contained
in any proper closed two-sided ideal of A. Thus, her a is a full hereditary subalgebra of A if
and only if Ia = A.
Finally, an element a ∈ A+ is called full if Ia = A and strictly positive if her a = A. The
latter implies the former, and A admits a strictly positive element if and only if A is σ-unital.
Furthermore, whenever A is separable (resp σ-unital) then any hereditary subalgebra, and a
fortiori any ideal, is separable (resp σ-unital). Thus, in the separable case any B ∈ Her(A) is
of the form her a, for some a ∈ A+, and any I ∈ Lat(A) is of the form Ia, for some a ∈ A+.

1.1.7. (Murray-von Neumann equivalence)
Let A be a C∗-algebra. Let p, q be projections of A. We say that p is Murray-von Neumann
equivalent to q, and we write p ∼MvN q, if there exists a partial isometry v of A, such that
p = v∗v and q = vv∗. In this case, p is called the support projection v and q the range
projection of v. Note that subequivalence is also considered, and we write p ≲MvN q whenever
there exists a partial isometry v ∈ A such that p = v∗v and vv∗ ≤ q.
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Define Pn(A) := P(Mn(A)) for every n ∈ N and P∞(A) :=
⋃
n∈N
Pn(A) identifying p ∈ Mn(A)

with
(

p 0
0 0

)
. Let us define a sum on P∞(A) as follows: for p ∈ Pn(A) and q ∈ Pm(A), we

define p ⊕ q :=
(

p 0
0 q

)
, an element of Pn+m(A). We can now extend the Murray-von Neumann

(sub)equivalence to P∞(A) as follows: if p ∈ Pn(A) and q ∈ Pm(A), we say that p is Murray-
von Neumann (sub)equivalent to q, and we still write p ∼MvN q (respectively p ≲MvN q), if
there exists a matrix of size l ≥ n,m, such that p⊕ 0n′ ∼MvN q⊕ 0m′ (respectively p⊕ 0n′ ≲MvN

q ⊕ 0m′), in Pl(A).

Definition 1.1.8. With all the tools defined above, one can define the Murray-von Neumann
semigroup of a C∗-algebra A as follows: V(A) := P∞(A)/∼MvN where [p] + [q] := [p ⊕ q]
and [p] ≤ [q] if p ≲MvN q. Note that V(A) has [0A] as a neutral element and that any element
[p] ≥ [0] for any p ∈ P∞(A).
We hence get a positively ordered monoid. Besides, the partial order is algebraic, since [p] ≤
[q] if and only if there exists [r] such that [p] + [r] = [q]. In fact, if p = vv∗ and v∗v ≤ q, then
r := q − v∗v.

1.1.9. (Unitary elements)
Let A be a (unital) C∗-algebra. Let u, v be unitary elements of A. We say that u is homotopic
to v, and we write u ∼h v, if there exists a continuous map f : [0, 1] −→ U(A), such that
f (0) = u and f (1) = v. Note that another equivalence is also considered: u is approximately
unitarily equivalent to v whenever there exists a sequence of unitary elements of A (wn)n such
that u = lim

n∈N
w∗nvwn. For now, we will only use and give details about the homotopy equiva-

lence.
We define the connected component of the unit in U(A) as U0(A) := {u ∈ U(A) | u ∼h 1A}.
This is a normal subgroup ofU(A). Let us mention some of the relevant properties:
(i)U0(A) ≃ ⟨{eih}h∈Asa⟩

(ii) If ∥u − v∥ < 2, then u ∼h v. Hence if a unitary is such that sp(u) , T then u ∈ U0(A).
(iii) [Whitehead Lemma] ( u 0

0 v ) ∼h ( uv 0
0 1 ) ∼h ( vu 0

0 v ) ∼h ( v 0
0 u ). In particular ( u 0

0 u∗ ) ∼h ( 1A 0
0 1A

).
Define, for every n ∈ N, Un(A) := U(Mn(A)) and U∞(A) :=

⋃
n∈N
Un(A). Let us define a sum

onU∞(A) as follows: for u ∈ Un(A) and v ∈ Um(A), we define u ⊕ v := ( u 0
0 v ), an element of

Un+m(A). We can now extend the homotopy equivalence toU∞(A) as follows: let u ∈ Un(A)
and v ∈ Um(A), we say that u is homotopic to v, and we still write u ∼h v if there exists a
matrix of size l ≥ n,m, such that u ⊕ 1n′ ∼h q ⊕ 1m′ inUl(A).
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1.1.10. (K-Theory)
We will briefly define what are the famous K-theoretical invariants for C∗-algebras: K0 and
K1. Let us consider the unital case here.

1.1.11. (The Grothendieck Construction)
Let S be a monoid. We define an equivalence relation on S × S as follows: (s1, t1) ∼ (s2, t2)

if there exists e in S such that s1 + t2 + e = s2 + t1 + e. Let us denote [(s, t)] the class of
the pair (s, t) ∈ S × S . We can naturally define a component-wise addition on this quotient.
We obtain an abelian group whose neutral element is [0, 0] = [(s, s)] and for any (s, t) ∈
S × S , [(s, t)] + [(t, s)] = [(0, 0)]. This process is called the Grothendieck construction and
Gr(S ) := ((S × S )/∼,+) is called the Grothendieck group associated to S .
Note that if S has cancellation, that is, x + y = z + y implies x = y for any x, y, z ∈ S , the
construction can be simplified as follows: (s1, t1) ∼ (s2, t2) if s1 + t2 = s2 + t1.

Definition 1.1.12. Let A be a unital C∗-algebra.
(i) We define K0(A) := Gr(V(A)). In fact, K0 is functor from the category of unital C∗-algebras,
that we write C∗, to the category of abelian groups, that we write AbGp.
(ii) We define K1(A) := U∞(A)/∼h and we define an addition on K1(A) as follows: for any u, v
inU∞(A), [u] + [v] := [u ⊕ v]. (K1(A),+) becomes an abelian group whose neutral element is
[1A] and for any u ∈ U∞(A), [u] + [u∗] = [1A]. In fact, K1 is a functor from C∗ to the category
of abelian groups AbGp. See Section 1.2.

Theorem 1.1.13. [6-term exact sequence]
Let 0 −→ I

ϕ
−→ A

ψ
−→ B −→ 0 be a short exact sequence in C∗. Then the following 6-term

sequence is exact:

K0(I)
K0(ϕ) // K0(A)

K0(ψ) // K0(B)

δ0
��

K1(B)

δ1

OO

K1(A)
K1(ψ)
oo K1(I)

K1(ϕ)
oo

where δ0 is the so-called exponential map and δ1 is the so-called index map; see [9, Theorem
9.3] for instance.

Definition 1.1.14. Let A be a C∗ algebra.
(i) If A is unital, we say that A has stable rank one, and we write sr(A) = 1, if the set of
invertibles is dense in A, that is, Gl(A) = A. This is an essential notion that has a lot of
implications in many places, such as cancellation of projections in V(A), or K1-surjectivity,
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among many others. Actually, we will only consider C∗-algebras of stable rank one in the rest
of the thesis. See [60]. If A is non-unital, then we say that A has stable rank one if A∼ has
stable rank one.
(ii) If A is unital, we say that A has real rank zero, and we write RR(A) = 0, if the set of
invertible self-adjoint elements are dense in the set of self-adjoint elements, that is A−1

sa = Asa.
This notion ensures that the algebra has a fair number of projections. See [14]. If A is non-
unital, then we say that A has real rank zero if A∼ has real rank zero.
Actually, let us give a few characterizations that are more commonly used in other parts of the
thesis.

Theorem 1.1.15. (Characterization) [14, Theorem 2.6]
Let A be a (unital separable) C∗-algebra. Then the following are equivalent:
(i) A has real rank zero.
(ii) The set of self-adjoint elements with finite spectrum is a dense subset of Asa.

(iii) For any x ∈ Asa, there exist pairwise orthogonal projections (pi)i∈N such that
n∑
1
λi pi −→

n→∞
x.

(iv) Every hereditary subalgebra has a countable approximate unit consisting of projections.
(v) Every hereditary subalgebra is generated by its projections.

Definition 1.1.16. Let A be a C∗-algebra. We say that A has the ideal property if any ideal
of A is generated (as an ideal) by its projections. This notion is a generalization of real rank
zero and any simple C∗-algebra also has the ideal property. This has been widely investigated,
among others, by C. Pasnicu and we refer the reader to [53] and [52] for some properties, uses
and characterizations of the ideal property.

Proposition 1.1.17. [61, Theorem 2.10], [50, Proposition 4]
Let A be a C∗-algebra and let I ∈ Lat(A).
If A has stable rank one, then U(A)/U0(A) ≃ K1(A). We also have that K0(I) −→ K0(A) is
injective and K1(A) −→ K1(A/I) is surjective.
If A has real rank zero, then K1(I) −→ K1(A) is injective and K0(A) −→ K0(A/I) is surjective.

Theorem 1.1.18 (Künneth Formula). ([9, Theorem 23.1.3]) Let A, B be C∗-algebra such that
K0(A) ⊕ K1(B) is torsion-free. Then: K0(A ⊗ B) ≃ K0(A) ⊗ K0(B) ⊕ K1(A) ⊗ K1(B).
K1(A ⊗ B) ≃ K0(A) ⊗ K1(B) ⊕ K1(A) ⊗ K0(B).

1.1.19. (Examples) We will here give some basic examples of C∗-algebras and we will in the
meantime illustrate some of the notions introduced above.
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(i) The algebra of bounded operators. Let H be any Hilbert space and consider B(H) the
set of all bounded linear operators on H. Equipped with adjoint as the involution and the
operator norm, B(H) is a C∗-algebra. One can also consider K(H), the norm-closed span of
all operators with finite-dimensional range in B(H). It is also a C∗-algebra and the unique
non-trivial ideal of B(H).
• Take H = Cn for any n ∈ N. Then B(Cn) = K(Cn) = Mn(C), and it is a C∗-algebra of ‘finite
dimension’. Note that in this case, the involution of an element M is its transpose-conjugate
M∗ = M

t
.

• Take H = l2(N), any separable infinite dimensional Hilbert space (up to isometry). Then we
write K := K(l2(N)). This is an important case. Indeed, we have A ⊗ K = lim

−→n
(Mn(A), in),

where in are the canonical inclusions. We call A ⊗ K the stabilization of A. Furthermore
K1,K0,Lat are stable under stabilization, that is, Lat(A ⊗ K) ≃ Lat(A), respectively K0,K1.
In general, one can observe that for any C∗-algebra A and any n ∈ N, we have A ⊗ Mn(C) ≃
Mn(A) as follows: take a ∈ A and m := (mi j)1≤i, j≤n ∈ Mn. Then:

a ⊗ m =


m11a m12a ... m1na
m21a m22a ... m2na
. . .. . .. . .

mn1a mn2a ... mnna


(ii) The commutative setting. Let X be a locally compact Hausdorff topological space. One
can define C0(X) as the set of continuous complex-valued maps over X that vanish at infinity,
that is, continuous maps f : X −→ C such that for any ϵ > 0, the set {x ∈ X, | f (x)| ≥ ϵ}

is compact. Equipped with the point-wise operation, the supremum norm and the involution
induced by complex conjugation, that is f ∗(x) = f (x), the algebra C0(X) is a C∗-algebra.
Actually, any commutative C∗-algebra is of this form and C0(X) ≃ C0(Y) if and only if X ≃ Y .
Moreover C0(X) is unital if and only if X is compact, and in this case C0(X) = C(X), the set
of all continuous complex-valued maps over X.

(iii) One can now start to combine the existing basic examples we already have to get other
C∗-algebras. For instance, any direct sums of matrices over the complex numbers, that is,⊕

i
Mni(C) is a C∗-algebra. These are the finite dimensional C∗-algebras, up to ∗-isomorphisms.

One can also obtain other examples computing direct limits (see Section 1.2) of direct sums
of the examples above. This is how we will define the approximately finite dimensional C∗-
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algebras, also called AF algebras (which are nothing more than direct limits of finite dimen-
sional C∗-algebras), among other classes of C∗-algebras, such as AI, AT and AH algebras.
Those will be defined in detail later.

(iv) [Gelfand-Naimark] Any C∗-algebra A can be embedded (isometrically) into B(H) for
some Hilbert space H. This is most commonly known as the Gelfand-Naimark theorem. Ac-
tually, the Gelfand-Naimark-Segal construction, known as the GNS construcion, explicitly
gives us a Hilbert space Hu and faithful representation π : A −→ B(Hu), that is, an injective
∗-homomorphism (hence an isometry) from A into B(Hu). This map is sometimes refered to
as the universal representation of A. As it turns out that whenever A is separable, Hu can be
chosen separable too. Also, this allows us to give another concrete definition (as opposed to
the abstract one we already have) of a C∗-algebra: a concrete C∗-algebra is a norm-closed,
∗-subalgebra of B(H) for some Hilbert space H.

1.1.20. We next remind the reader about the bidual of a C∗-algebra, connections between
positive elements of A ⊗ K , countably generated right A-Hilbert modules, open/support pro-
jections and the hereditary subalgebra generated by an element of A⊗K . Until the end of this
section, everything stated can be found in [48] and in [58].

Definition 1.1.21. Let H be an (infinite dimensional) Hilbert space. We can define various
topologies on B(H) as follows:
(i) The norm topology naturally arising from the operator norm of B(H). A sequence of oper-
ators (Tn)n converges towards T if ∥Tn − T∥ →

n
0.

(ii) The strong operator topology, written SOT: A sequence of operators (Tn)n converges
strongly towards T if for any h ∈ H, ∥Tn(h) − T (h)∥H →

n
0.

(iii) The weak operator topology, written WOT: A sequence of operators (Tn)n converges
weakly towards T if for any h, h′ in H, ⟨(Tn − T )(h), h′⟩H →

n
0.

Obviously, the norm topology is stronger than the SOT, which is stronger than the WOT.

Definition 1.1.22. Let A be a C∗-algebra and let π : A −→ B(Hu) be its universal represen-
tation. We call the weak closure of π(A) in B(Hu) the enveloping von Neumann algebra of
A.

Theorem 1.1.23. (von-Neumann bicommutant theorem)
The enveloping von-Neumann algebra π(A)

WOT
of a C∗ algebra A is equal to its strong closure

π(A)
S OT

, and also equal to the bicommutant A′′ of A.
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Theorem 1.1.24. (Sherman-Takeda)
Let A be a C∗ algebra. Then the algebraic bidual A∗∗ of A is isomorphic to its bicommutant
A′′ (equivalently to its enveloping von-Neumann algebra) as Banach spaces.

Definition 1.1.25. We call a projection p of A∗∗ an open projection if p ∈ pA∗∗p ∩ A
strong

.
We define the support projection of a, the only open projection of A∗∗ such that Apa :=
paA∗∗pa ∩ A

strong
= her a. Whenever A is separable, one can prove that pa = S OT − lim a1/n.

Proposition 1.1.26. [58, §3] Let A be a C∗-algebra. Then we have the following set bijec-
tions: Popen(A∗∗) ≃ Her(A) and Psupport(A∗∗) ≃ {her a, a ∈ A+}. Thus, if A is separable then
Psupport(A∗∗) = Popen(A∗∗).

Definition 1.1.27. Let a and b be in A+. We write a ∼s b if there exists x ∈ A such that
her a = her(xx∗) and her b = her(x∗x). We sometimes write her a ∼s her b. Further, we write
a ≲s b if there exists a′ ∈ (her b)+ such that a′ ∼s a.
Let p and q be in Popen(A∗∗). We say that p is Peligrad-Zsidó equivalent to q, and we write
p ∼PZ q, if there exists α partial isometry of A∗∗ such that p = αα∗, q = α∗α, α∗Ap ⊆ A and
Aqα ⊆ A. Further, we write p ≲PZ q if there exists a projection p′ ≤ q such that p ∼PZ p′.

Proposition 1.1.28. [58, Proposition 4.3] Let a and b be in A+. Then the following are
equivalent:
(i) a ∼s b
(ii) pa ∼PZ pb

In this case, for any partial isometry α ∈ A∗∗ that realizes the Peligrad-Zsidó equivalence
between pa and pb, we have an explicit isomorphism as follows:

θab,α : her a ≃ her b
d 7−→ α∗dα

Remark 1.1.29. Note that in case of subequivalence only, the explicit morphism constructed
above is well defined and is an injection from her a into her b.

1.1.30. The next proposition is somehow similar to [58, 3.3 Proposition] and [55, Theorem
1.4], but for the sake of completeness we will give a proof of it in this slightly different picture.

Proposition 1.1.31. Let p be a support projection in A∗∗. Let a in A+ such that p = pa. Let α
be a partial isometry in A∗∗ such that p = αα∗. We set q := α∗α and x := a1/2α. Then p ∼PZ q
if and only if x belongs to A. In this case, q = px∗x.
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Proof. The forward implication is coming from the definition of the Peligrad-Zsidó equiva-
lence itself.
Now let us suppose that x := a1/2α belongs to A. Let d be in aAa. Then there exists δd in
A such that d = aδda. Now observe that α∗d = α∗a1/2a1/2δda, so it belongs to A, using the
hypothesis that x is in A. We get that α∗aAa ⊆ A, so α∗aAa ⊆ A, from which we deduce
α∗Ap ⊆ A.
One can see that because p is a support projection and q = α∗pα, we have that q is a support
projection and moreover α∗Apα = Aq. Using the fact that αAq = αAqα

∗α = Apα and that
(α∗Ap)∗ = Apα, we deduce that αAq ⊆ A. We conclude that p ∼PZ q and by construction
q = px∗x. □

Corollary 1.1.32. Let p be a support projection in A∗∗. Let q be a projection such that
q ∼MvN p in A∗∗. Then q is a support projection if and only if q ∼PZ p.

1.2 Introduction to Category Theory

1.2.1. In this section we briefly recall some concepts on Category Theory. Again, this is far
from complete but we refer the reader to [47] for more details.

1.2.2. (Basic definitions)
A category C is a collection of objects that are linked by arrows. We require that the arrows
compose in an associative way and that there exists an identity arrow, that we write idC, for
any object C in the category. We usually refer to an arrow as a morphism. Also, we usually
denote the collection of objects of C by Ob(C) or simply by C and we denote the collection of
morphisms from C1 to C2, where C1,C2 ∈ C, by HomC(C1,C2) or simply by C(C1,C2).
A first basic example is the category Set whose objects are sets and morphisms between two
objects are any maps between those sets. Note that we will always be in the context where the
collection of objects and the collection of morphisms between two objects are in fact objects
in Set, that is, sets. These categories are referred to as locally small categories. We do not
wish to go further on this topic, but we always suppose that a category is locally small.

A covariant functor F between two categories C,D is an assignment: F : C −→ D that
sends any object C ∈ C to an object F(C) ∈ D, and any morphism f ∈ C(C1,C2) between
C1,C2 ∈ C to a morphism F( f ) ∈ D(F(C1), F(C2)) such that:
(i) F(idC) = idF(C) for any C ∈ C.
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(ii) F(g ◦ f ) = F(g) ◦ F( f ) for any f ∈ C(C1,C2) and any g ∈ C(C2,C3).
In fact, there exist functors that ‘reverse’ morphisms. That is, using notations of the above,
any morphism f ∈ C(C1,C2) between C1,C2 ∈ C is sent to a morphism F( f ) ∈ D(F(C2), F(C1)).
In this case, condition (ii) needs adaptation and we say that F is a contravariant functor.
Let F : C −→ D be a functor between two (locally small) categories C,D.
We say that F is faithful if for any two objects C1,C2 ∈ C, the Set-morphism FC1,C2 :
C(C1,C2) −→ D(F(C1), F(C2)) induced by F is an injective morphism.
We say that F is full if for any two objects C1,C2 ∈ C, the Set-morphism FC1,C2 : C(C1,C2) −→
D(F(C1), F(C2)) induced by F is a surjective morphism.

Let C be a category. A subcategory of C is a category D whose objects are objects in C
and whose morphisms are morphisms in C with the same identities and compositions of mor-
phisms. There exists a natural functor i : D −→ C that we call the inclusion functor. This
is clearly a faithful functor. If moreover, the inclusion functor is full, we say that D is a full
subcategory of C.

1.2.3. (Limits/Colimits - Completeness/Cocompleteness)
Consider a (commutative) diagram Λ := (Ci, fi j)i, j∈I in C. That is, a collection of objects of C
linked by a collection morphisms of C such that any two different paths starting and ending at
the object commute. Note that we will always be in the context where these two collections
are in fact objects in Set, that is, sets. These diagrams (and their limits/colimits) are referred
to as small diagrams/limits/colimits. We do not wish to go further on this topic, but we always
suppose that a diagram/limit/colimit is small.
A notion of limit and dually a notion of colimit of a diagram can be defined in a category C as
follows:
A cone to Λ is a pair (C, fi∞)i∈I , where fi∞ : C −→ Ci is a C-morphism, such that for any
fi j : Ci −→ C j in I, we have fi j ◦ fi∞ = f j∞. A limit of Λ is a cone to Λ, (C, fi∞)i∈I , such
that for any other cone (C′, f ′i∞)i∈I there exists a unique C-morphism u : C′ −→ C such that
f ′i∞ = fi∞ ◦ u for any i ∈ I. Inverse limits, pullbacks, (infinite) direct products are examples
of (small) limits.
Dually, a cocone to Λ is a pair (C, fi∞)i∈I , where fi∞ : Ci −→ C is a C-morphism such that for
any fi j : Ci −→ C j in I, we have f j∞ ◦ fi j = fi∞. A colimit of Λ is a cone to Λ, (C, fi∞)i∈I , such
that for any other cone (C′, f ′i∞)i∈I there exists a unique C-morphism u : C −→ C′ such that
f ′i∞ = u ◦ fi∞ for any i ∈ I. Inductive limits (or direct limits), pushouts, (infinite) direct sums
(or coproducts) are examples of (small) colimits.
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Note that a limit or a colimit need not exist but when it does, it is unique up to isomorphism.
Thus we speak about the limit/colimit of a diagram.
Finally, we say a category C is complete if any diagram admits a limit in C. Dually, we say a
category C is cocomplete if any diagram admits a colimit in C.

1.2.4. (Adjunction - Reflection/Coreflection)
Let F : C −→ D and let G : D −→ C be (covariant) functors between two categories C,D.
We say that F is left-adjoint to G, and hence, G is right-adjoint to F if for any C ∈ C and any
D ∈ D, we have C(C,G(D)) ≃ D(F(C),D) in a natural way. We will specify what the notion
of naturality means when needed.

Let C be a category and let D be a full subcategory of C. We say D is a reflective sub-
category of C if the inclusion functor i has a left-adjoint, that we call a reflector. Dually, we
say D is a coreflective subcategory of C if the inclusion functor i has a right-adjoint, that we
call a coreflector.
Let C be a category and let D be a reflective subcategory of C. Then any colimit in C passes
through reflectors to a colimit in D. Dually, limits pass to coreflective subcategories through
coreflectors.

1.2.5. (Examples) We will here give some basic examples of categories and illustrate some of
the notions introduced above.
The category of abelian groups, that we write AbGp, whose objects are abelian groups and
morphisms are group homomorphisms. It is a full subcategory of the category of groups. It is
a bicomplete category.
The category of C∗-algebras, that we write C∗, whose objects are C∗-algebras and morphisms
are ∗-homomorphisms. It is a bicomplete category.
The category of positively ordered monoids, that we write PoM, whose objects are positively
ordered monoids and morphisms are monoid morphisms that respect ≤. It has inductive limits,
products and coproducts. Let us here explicitly construct an inducitve limit in PoM, knowing
that an adapted construction could be done in AbGp or C∗:
Let (S i, φi j)i∈I be an inductive system in PoM. We define S :=

⊔
i∈I

S i/∼, where x ∼ y for

x ∈ S i and y ∈ S j, if there exists k ≥ i, j such that φik(x) = φ jk(x). We equip S with + and
≤ as follows: Let x and y be in S . We define x + y := φik(xi) + φ jk(y j) and we say x ≤ y if
φik(xi) ≤ φ jk(y j), where xi ∈ S i and y j ∈ S j are representatives of x and y respectively and
k ≥ i, j. One can check that (S ,+,≤) ∈ PoM and that it is the inductive limit of the diagram in
the category PoM.
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1.3 The Cuntz semigroup of a C∗-algebra

1.3.1. We will recall some definitions and properties that will lead us to the Cuntz semigroup
of a C∗-algebra. More details can be found in [4], [71], [64], [63], [21].

Definition 1.3.2. Let A be a C∗-algebra. We denote by A+ the set of positive elements. Let a
and b be in A+. We say that a is Cuntz subequivalent to b, and we write a ≲Cu b, if there exists
a sequence (xn)n∈N in A such that a = lim

n∈N
xnbx∗n. After antisymmetrizing this relation, we get

an equivalence relation over A+, called the Cuntz equivalence, denoted by ∼Cu.
Let us write Cu(A) := (A ⊗K)+/∼Cu, that is, the Cuntz classes of positive elements of A ⊗K .
Given a ∈ (A⊗K)+, we write [a] the Cuntz class of a. Now we use the isomorphism between
M2(A ⊗ K) ≃ A ⊗ K to define an addition as follows: let v1 and v2 be two isometries in the
multiplier algebra of A ⊗ K , such that v1v∗1 + v2v∗2 = 1M(A⊗K). Consider the ∗-isomorphism
ψ : M2(A ⊗ K) −→ A ⊗ K given by ψ( a 0

0 b ) = v1av∗1 + v2bv∗2, and we write a ⊕ b := ψ( a 0
0 b ).

The set Cu(A) comes with a natural order given by [a] ≤ [b] whenever a ≲Cu b, and we set
[a] + [b] := [a ⊕ b] for any [a], [b] in Cu(A). In this way Cu(A) is now a semigroup called the
Cuntz semigroup of A.
For any ∗-homomorphism ϕ : A −→ B, one can define Cu(ϕ) : Cu(A) −→ Cu(B), a semigroup
map, by [a] 7−→ [(ϕ⊗ idK )(a)]. Hence, we get a functor from the category of C∗-algebras into
a certain subcategory of PoM, called the category Cu, that we describe next.

Proposition 1.3.3. [19, Proposition 1] Let A be a C∗-algebra of stable rank one and let
a, b ∈ A+. Then a ≲Cu b if and only if there exists x ∈ A such that xx∗ = a and x∗x ∈ her b.

Proposition 1.3.4. [58, §6] Let A be a C∗-algebra and let a, b ∈ A+.
(i) If a ∼s b (resp a ≲s b), then a ∼Cu b (resp a ≲Cu b).
(ii) If pa ∼PZ pb (resp pa ≲PZ pb), then pa ∼Cu pb (resp pa ≲Cu pb).
(iii) Finally, if A has stable rank one then all converse implications hold.

Remark 1.3.5. As we will exclusively be concerned with the stable rank one case, we have
equivalences between a ∼s b, a ∼Cu b, and pa ∼PZ pb (resp ≲∗).

Definition 1.3.6. Let (S ,≤) be a positively ordered semigroup. An auxiliary relation on S is
a binary relation ≺ such that:
(i) R≺ ⊆ R≤.
(ii) For any a, b, c, d ∈ S such that a ≤ b ≺ c ≤ d then a ≺ d.
(iii) For any a ∈ S , we have (0, a) ∈ R≺.
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Definition 1.3.7. Let (S ,≤) be a positively ordered semigroup. For any x, y in S , we say that x
is way-below y and we write x ≪ y if, for any increasing sequence (zn)n∈N that has a supremum
in S such that sup

n∈N
zn ≥ y, there exists k such that zk ≥ x. This is an auxiliary relation on S

called the compact-containment relation. In particular x ≪ y implies x ≤ y.
We say that S is an abstract Cu-semigroup if it satisfies the Cuntz axioms:
(O1): Every increasing sequence of elements in S has a supremum.
(O2): For any x ∈ S , there exists a≪-increasing sequence (xn)n∈N in S such that sup

n∈N
xn = x.

(O3): Addition and the compact containment relation are compatible.
(O4): Addition and suprema of increasing sequences are compatible.
A generalized Cu-morphism between two Cu-semigroups S ,T is a positively ordered monoid
that preserves suprema of increasing sequences. A Cu-morphism between two Cu-semigroups
S ,T is a positively ordered monoid that preserves the compact containment relation and
suprema of increasing sequences.
The Cuntz category, written Cu is the subcategory of PoM whose objects are Cu-semigroups
and morphims are Cu-morphisms. Actually, as shown for instance in [4, Corollary 3.2.9], the
functor Cu from the category of C∗-algebras to Cu is arbitrarily continuous, generalizing the
result of [21, Theorem 2] that established sequential continuity.

Definition 1.3.8. Let S be a Cu-semigroup. We say that S is countably-based if there exists
a countable subset B ⊆ S such that for any a, a′ ∈ S such that a′ ≪ a, then there exists b ∈ B
such that a′ ≤ b ≪ a. The set B is often referred to as a basis.
An element u ∈ S is called an order-unit of S if for any x ∈ S , there exists n ∈ N such that
x ≤ n.u.

1.3.9. Let S be a countably-based Cu-semigroup. Then, S has a maximal element, or equiv-
alently, it is singly-generated. Let us also mention that if A is a separable C∗-algebra, then
Cu(A) is countably-based. In fact, its largest element, that we write∞A, can be explicitly con-
structed as follows: Let sA be any strictly positive element (or full) in A. Then∞A = sup

n∈N
n.[sA].

A fortiori, [sA] is an order-unit of Cu(A).

1.3.10. (Lattice of ideals in Cu)
Let S be a Cu-semigroup. An ideal of S is a submonoid I that is closed under suprema of
increasing sequences and such that for any x, y such that x ≤ y and y ∈ I, then x ∈ I.
It is shown in [4, §5.1.6], that for any I, J ideals of S , I∩ J is again an ideal. Therefore for any
x ∈ S , the ideal generated by x, defined as the smallest ideal of S containing x, that we write
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Ix, is exactly the intersection of all ideals of S containing x. An explicit computation gives us
Ix := {y ∈ S such that y ≤ ∞.x}.
Moreover it is shown that I + J := {z ∈ S | z ≤ x + y, x ∈ I, y ∈ J} is also an ideal. Thus we
write Lat(S ) := {ideals of S }, which is a complete lattice under the following operations: for
any two I, J ∈ Lat(S ), we define I ∧ J := I ∩ J and I ∨ J := I + J.
Furthermore, for any C∗-algebra A, we have that Cu(I) is an ideal of Cu(A) for any I ∈ Lat(A).
In fact, we have a lattice isomorphism as follows:

Lat(A)
≃
−→ Lat(Cu(A))

I 7−→ Cu(I)

Finally, whenever S is countably-based, any ideal I of S is singly-generated, for instance by
its largest element, that we also write ∞I . In particular, for any separable C∗-algebra A, any
a, b ∈ (A ⊗ K)+, if [a] ≤ [b] in Cu(A), then Ia ⊆ Ib, or equivalently I[a] ⊆ I[b]. (Notice that the
converse is a priori not true: Ix = Ik.x for any x ∈ Cu(A), any k ∈ N but in general x , k.x).

1.3.11. (Quotients in Cu)
Let S be a Cu-semigroup and I ∈ Lat(S ). Let x, y ∈ S . We write x ≤I y if: there exists

z ∈ I such that x ≤ z + y. By antisymmetrizing ≤I , we obtain an equivalence relation ∼I on
S . Define S/I := S/∼I . For x ∈ S , write x := [x]∼I and equip S/I with the following addition
and order: Let x, y ∈ S . Then x + y := x + y and x ≤ y, if x ≤I y. These are well-defined
and (S/I,+,≤) is a Cu-semigroup, often referred to as the quotient of S by I. Moreover, the
canonical quotient map S −→ S/I is a surjective Cu-morphism. Finally, for any C∗-algebra A
and any I ∈ Lat(A), we have Cu(A/I) ≃ Cu(A)/Cu(I); see [20, Corollary 2].

Definition 1.3.12. Let X be a topological space and S be a Cu-semigroup. Let f : X −→ S
be a map. We say that f is lower-semicontinuous if for any s ∈ S , the set {t ∈ X : s ≪ f (t)} is
open in X. We write Lsc(X, S ) the set of lower-semicontinuous functions from X to S .

1.3.13. In the following see Definition 6.1.1 for the definition of covering dimension.

Theorem 1.3.14. [3, Theorem 5.15]
Let X be a compact Hausdorff second countable space of finite covering dimension and let S
be a countably-based Cu-semigroup. Then Lsc(X, S ) is also a Cu-semigroup.

Theorem 1.3.15. [3, Theorem 3.4] Let A be a separable C∗-algebra of stable rank one such
that K1(I) = 0 for every ideal of A. Let X be a locally compact Hausdorff space that is second
countable and of covering dimension one. Then Cu(C0(X) ⊗ A) ≃ Lsc(X,Cu(A)).
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1.3.16. We end this section by defining the notion of algebraic Cu-semigroups. This allows us
to link the real rank zero property of a C∗-algebra A, that ensures a lot of projections with the
notion of ’density’ of compact elements in Cu(A). We refer the reader to [4, §5.5] for details.
Let S ∈ Cu. Using the Cuntz axioms, one can check that S c := {x ∈ S | x ≪ x} is a PoM.
An element x ∈ S c is referred to as a compact element. Furthermore, we know that for any
Cu-morphism f : S −→ T between two Cu-semigroups S ,T , f (S c) ⊆ Tc, so f induces a
PoM-morphism fc : S c −→ Tc.
Thus, we define the following functor:

νc : Cu −→ PoM
S 7−→ S c

f 7−→ fc

On the other hand for any M ∈ PoM such that M ⊆ S , we define the ‘completion’ of M in S ,
that we write γ(M), as the subset of S consisting of suprema (in S ) of any increasing sequence
in M. One can check that (γ(M),≤) ∈ Cu.

Definition 1.3.17. Let S ∈ Cu. We say S is an algebraic Cu-semigroup if any s ∈ S is the
supremum of an increasing sequence of compact elements. That is, an increasing sequence in
S c. We denote by Cualg the full subcategory of Cu consisting of algebraic Cu-semigroups.

Proposition 1.3.18. [4, Proposition 5.5.4]
(i) For any S ∈ Cualg, we have γ(S c) ≃ S as Cu-semigroups.
(ii) For any S ∈ Cu and any M ∈ PoM such that M ⊆ S , we have (γ(M),≤) ∈ Cualg.

Theorem 1.3.19. [21, Corollary 5], [4, Remark 5.5.2]
Whenever A has real rank zero, Cu(A) is an algebraic Cu-semigroup. Moreover, if A has
stable rank one, the converse is true.

1.4 Traces and Functionals

All of the following can be found in [30] and [71].

Definition 1.4.1. Let A be a C∗-algebra. Let τ : A+ −→ R+. We say that τ is a trace on A if
it is additive, homogeneous (that is, τ(0) = 0 and τ(r.a) = r.τ(a) for any a ∈ A+, r ∈ R∗+) and
satisfies the trace property, that is, τ(xx∗) = τ(x∗x) for any x ∈ A.
We say that τ is lower-semicontinuous if it is continuous for the Scott-topology on R, that
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is, τ−1(]t;∞]) are open sets of A for any t > 0. We denote by T (A) the set of all lower-
semicontinuous traces on A.

Proposition 1.4.2. Every trace on A+ extends uniquely to o trace on (A ⊗ K)+.

Definition 1.4.3. A 1-quasitrace on A is a map τ : A+ −→ R+ that is homogeneous, additive
on commutating elements, and statisfies the trace property.
An n-quasitrace on A is 1-quasitrace on A that extends to a 1-quasitrace on A ⊗ Mn.

Proposition 1.4.4. Any lower-semicontinuous 2-quasitrace on A extends to a lower-semiconti-
nuous 1-quasitrace on A⊗K . Hence, it has been commonly used in the literature that QT2(A)
is the set of all lower-semiconituous quasitraces on A ⊗ K , or equivalently, the set of all 2-
quasitraces on A.
(Note that it is also of common use to denote QT (A) the set of all 1-quasitraces on A.)

Remark 1.4.5. Since we consider positive elements of A⊗K in the context of Cu-semigroups,
the interesting objects are the 2-quasitraces on A. By our discussion above we have: T (A) ⊆
QT2(A) ⊆ QT (A).

Definition 1.4.6. Let A be a C∗-algebra. A functional on Cu(A) is a generalized Cu-morphism
α : Cu(A) −→ R+. We denote by F(Cu(A)) the set of all functionals on Cu(A).

Definition 1.4.7. A cone is an abelian monoid endowed with an R∗+-multiplication.

Theorem 1.4.8. [30, Theorem 4.4]
(i) T (A), QT2(A) and F(Cu(A)) are cones and moreover their scalar multiplication can be
extended to R+.
(ii) QT2(A) ≃ F(Cu(A)) as R+-cones. Indeed for any τ ∈ QT2(A), one can consider the
following functional:

dτ : Cu(A) −→ R+
[a] 7−→ sup

n∈N
τ(a1/n)

and for any λ ∈ F(Cu(A)), one can consider the following 1-quasitrace on A ⊗ K:

τλ : (A ⊗ K)+ −→ R+
a 7−→

∫ ∞
0
λ([(a − t)+])dt

Finally the maps that send τ 7−→ dτ and λ 7−→ τλ are inverses of one another.
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Theorem 1.4.9. (Haagerup [39, Theorem 5.11] - see e.g. [30, Remark 4.3])
Whenever A is exact, we have T (A ⊗ K) = QT2(A). Using Proposition 1.4.2, we deduce that
whenever A is exact, T (A) ≃ F(Cu(A)) as R+-cones.

Corollary 1.4.10. Let us denote by C∗ex the category of separable exact C∗-algebra and by
Cone the category of whose objects are R+-cones and morphisms are monoid morphisms that
preserve the R+-multiplication.
Then T and F ◦ Cu are well-defined continuous contravariant functors from C∗ex to Cone.
Besides there exists a natural isomorphism between them. That is, F ◦ Cu ≃ T

Proof. The continuity of the functors is proved in [30, Theorem 4.8]. Even though this natural
isomorphism is a direct consequence of everything explained before, it is not explicitly stated
in [30], so we will prove it here. Let A ∈ C∗ex. We have seen that there exists ηA : T (A) ≃
F(Cu(A)) that sends τ 7−→ dτ. Let ϕ : A −→ B. By contravariance of the functors T and
F ◦ Cu we get the following maps:

T (ϕ) : T (B) −→ T (A) F(Cu(ϕ) : F(Cu(B)) −→ F(Cu(A))
τ 7−→ τ ◦ ϕ λ 7−→ λ ◦ Cu(ϕ)

And since τ ◦ ϕ(a1/n) = τ(ϕ(a)1/n) for any τ ∈ T (B), any a ∈ A+, we get that dτ◦ϕ = dτ ◦Cu(ϕ).
In other words, the following square is commutative:

T (B)

T (ϕ)
��

ηB // F(Cu(B))

F◦Cu(ϕ)
��

T (A) ηA
// F(Cu(A))

which ends the proof. □

Definition 1.4.11. Let A be a C∗-algebra. Let us denote by BanR the category whose objects
are real Banach spaces, that is, a partially ordered Banach vector space over R and morphisms
are real Banach space, that is, continuous R-linear maps that respect the order.
Now let us consider Aff T (A) := {Continuous affine maps f : T (A) −→ R}. Then Aff :
Cone −→ BanR is a continuous contravariant functor. Hence Aff T : C∗ex −→ BanR is a
continuous covariant functor.
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Chapter 2

The Cu1 semigroup

In this chapter, we are going to define a new invariant for C∗-algebras. As stated before, the
aim is to ‘merge ’ the Cuntz semigroup and the K1-group. The first section is about defining
the invariant, its categorical setting and describe its first properties. The second section and
third section are focused on the continuity of our invariant. Finally, in the last section, we give
an analogous notion to real rank zero in the categorical setting of the invariant.
To ease the notations, we will in this chapter use C∗ to denote the category of separable C∗-
algebras of stable rank one.

2.1 Definition of the invariant and its first properties

2.1.1. In this section, we will define our new invariant, the Cu1-semigroup, and describe its
first properties. Let us start with an important lemma and the definition of a preorder in order
to get all the tools we need to do so.

Lemma 2.1.2. Let A be a C∗-algebra with stable rank one and let a and b be contractions
in A+ such that a ≲Cu b. Let α and β be in A∗∗ such that they both realize the Peligrad-Zsidó
subequivalence of pa ≲PZ pb as in Definition 1.1.27. For any u ∈ U(her a∼), we have

[θ∼ab,α(u)]K1(her b∼) = [θ∼ab,β(u)]K1(her b∼)

where θ∼ab,α (resp θ∼ab,β) is the unitized morphism of θab,α in Proposition 1.1.28.

Proof. In this proof, since a and b are fixed elements, we will only write θα for θab,α (resp θβ
for θab,β).
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We consider the two injections given by α and β:

θα : her a ↪→ her b θβ : her a ↪→ her b
d 7−→ α∗dα d 7−→ β∗dβ

We define x := a1/2α and y := a1/2β. We first consider elements of aAa. Later, we will use the
continuity of these maps and that every element of her a can be approximate by elements of
aAa to obtain our result. We can rewrite θα and θβ as follows:

θα : aAa ↪→ bAb θβ : aAa ↪→ bAb
aδa 7−→ x∗a1/2δa1/2x aδa 7−→ y∗a1/2δa1/2y

Let u be a unitary element of her a∼. There exists a pair (u0, λ) with u0 ∈ her a and λ ∈ C such
that u = u0 + λ.
Let ϵ > 0. Now let δϵ be in A such that ∥u0 − aδϵa∥ < ϵ.
Since a = xx∗ = yy∗, by [19, Lemma 2] we know there exists a unitary element uϵ of her b∼

such that ∥y − xuϵ∥ < ϵ (equivalently ∥u∗ϵ x
∗ − y∗∥ < ϵ).

Now, we compute:

∥u∗ϵθ
∼
α(aδϵa + λ)uϵ − θ∼β (aδϵa + λ)∥ = ∥u∗ϵ x

∗a1/2δϵa1/2xuϵ − y∗a1/2δϵa1/2y∥

≤ ∥u∗ϵ x
∗a1/2δϵa1/2xuϵ − y∗a1/2δϵa1/2xuϵ∥

+ ∥y∗a1/2δϵa1/2xuϵ − y∗a1/2δϵa1/2y∥

≤ ∥u∗ϵ x
∗a1/2δϵa1/2xuϵ − y∗a1/2δϵa1/2xuϵ∥

+ ∥y∗a1/2δϵa1/2xuϵ − y∗a1/2δϵa1/2y∥

≤ ∥u∗ϵ x
∗ − y∗∥ ∥a1/2δϵa1/2xuϵ∥ + ∥y − xuϵ∥ ∥a1/2δϵa1/2∥ ∥y∗∥.

Since a2 ≤ a, by [29, Lemma A.1] we know there exists a sequence (zn)n in A such that
a1/2 = lim

n∈N
azn, where all zn are contractions. Equivalently, a1/2 = lim

n∈N
z∗na. So we can find an

kϵ in N such that ∥a1/2δϵa1/2∥ ≤ ∥z∗kϵaδϵazkϵ∥ + ϵ ≤ ∥aδϵa∥ + ϵ.
Hence, we get that ∥a1/2δϵa1/2∥ ≤ ∥aδϵa∥ + ϵ. Moreover, ∥u0∥ − |λ| ≤ ∥u0 + λ∥ = 1. So we
obtain that ∥u0∥ ≤ 2, which leads to ∥aδϵa∥ ≤ 2 + 2ϵ ≤ 3.
Putting all together, we finally get that ∥u∗ϵθ

∼
α(aδϵa + λ)uϵ − θ∼β (aδϵa + λ)∥ ≤ 6ϵ, which proves

us that
u∗ϵθ

∼
α(aδϵa + λ)uϵ ∼h θ

∼
β (aδϵa + λ).
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Now combining u ∼h aδϵa + λ with the continuity of θ∼α and θ∼β , we conclude:

u∗ϵθ
∼
α(u)uϵ ∼h θ

∼
β (u)

and the result follows. □

Definition 2.1.3. (The ≲1 binary relation)
Let A be a C∗-algebra with stable rank one. Let a, b ∈ A+ and let u, v be unitary elements of
her a∼ and her b∼ respectively. We write (a, u) ≲1 (b, v) if: a ≲Cu b

[θ∼ab,α(u)] = [v] in K1(her b∼)

where θab,α is the injection given by a partial isometry α as constructed in Proposition 1.1.28.

Lemma 2.1.4. The relation ≲1 is reflexive and transitive.

Proof. Reflexivity of ≲1 follows from the fact that ≲Cu is reflexive and that idher a = θaa,pa .
Now let a, b and c be in A+ and let ua, ub and uc be unitary elements of her a∼, her b∼ and her c∼

respectively. Assume that (a, ua) ≲1 (b, ub) and (b, ub) ≲1 (c, uc). By hypothesis, we know that
a ≲Cu b and b ≲Cu c. Since A has stable rank one, there exist x, y ∈ A such that a = xx∗,
b = yy∗, x∗x ∈ her b and y∗y ∈ her c.
Let us consider the polar decompositions of x and y. That is, x = a1/2α, y = b1/2β, for some
partial isometries α, β of A∗∗. Using Proposition 1.1.28, we get pa = αα

∗ ∼PZ α
∗α ≤ pb and

also pb ∼PZ β
∗β ≤ pc. We set qa := α∗α, qb := β∗β. One can check that γ := αβ is a partial

isometry of A∗∗. Furthermore, pa = γγ
∗.

Let us write z := a1/2γ. Observe that zz∗ = a and also z = xβ. We hence compute that
z∗z = β∗x∗xβ ∈ her c. We deduce that zz∗ = a and z∗z ∈ her c.
By [6, Proposition 2.12] we may write x := u∗(x∗x)1/3 for some element u of A. Since (x∗x) ∈
Apb and β∗Apb ⊆ A, we deduce that β∗x∗ is in A, and hence z ∈ A.
Using Proposition 1.1.31, we obtain that qc := γ∗γ is the support projection of z∗z and is
Peligrad-Zsidó equivalent to pa. Finally, Lemma 2.1.2 tells us that θac,γ := θbc,β ◦θab,α is one of
the morphism described in Proposition 1.1.28, from which the transitivity of ≲1 follows. □

Remark 2.1.5. Let A be a C∗-algebra with stable rank one and let a ∈ A+. We have seen
that for any unitary element u of her a∼ and any partial isometry α ∈ A∗∗ such that pa = αα

∗,
the K1-class [θ∼ab,α(u)] does not depend on the α chosen. In the sequel, whenever a ≲Cu b,
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we will refer to the maps θ∼ab,α as standard maps and will rewrite them as θab, for obvious
notational purposes. In particular, whenever a ≤ b observe that the canonical inclusion map i
is a standard map.
Also, notice that every standard morphism between a and b gives rise to the same group
morphism at the K1-level, that we will denote by χab. That is, χab := K1(θab) : K1(her a) −→
K1(her b).

2.1.6. (The Cu1-semigroup)
Let A be a C∗-algebra with stable rank one. We consider a set consisting of pairs of positive

elements and unitaries as follows:

H(A) := {(a, u) : a ∈ (A ⊗ K)+, u ∈ U(her a∼)}

By antisymetrizing ≲1, we define an equivalence relation on H(A), that we write as ∼1. Now
define:

Cu1(A) := H(A)/∼1

The equivalence class of an element (a, u) ∈ H(A) is denoted by [(a, u)].
By the isomorphism ψ : M2(A ⊗ K) ≃ A ⊗ K (see Definition 1.3.2), given any two elements
(a, u), (b, v) ∈ H(A), we know that a ⊕ b := ψ( a 0

0 b ) is a positive element of A ⊗ K . Besides,
( her a 0

0 her b ) ⊆ her(a ⊕ b) and hence u ⊕ v := ( u 0
0 v ) is a unitary element of her(a ⊕ b)∼.

Thus, for any two [(a, u)], [(b, v)] ∈ Cu1(A), we say [(a, u)] ≤ [(b, v)] if, (a, u) ≲1 (b, v)
and we set [(a, u)] + [(b, v)] := [(a ⊕ b), (u ⊕ v)].

Proposition 2.1.7. Let A be a C∗-algebra with stable rank one. Then (Cu1(A),+,≤) defined
in Paragraph 2.1.6 is a partially ordered monoid, whose neutral element is [(0A, 1C)].

Proof. By construction ≤ is a well-defined partial order on Cu1(A). Further, given a, b in
(A ⊗K)+, we know that a ⊕ b is a positive element of A ⊗K and u ⊕ v is a unitary element of
(her(a⊕ b)∼). We only have to check that addition defined in Paragraph 2.1.6 does not depend
on the representative chosen:
Let x, y ∈ Cu1(A). Let [(a1, u1)], [(a2, u2)] be representatives of x and [(b1, v1)], [(b2, v2)] be
representatives of y. Since [a1] = [a2] and [b1] = [b2] in Cu(A), we get that [a1 ⊕ b1] =
[a2 ⊕ b2] in Cu(A). We also know that χa1a2([u1]) = [u2] in K1(her a2) and χb1b2([v1]) = [v2] in
K1(her b2). Hence we get θa1a2(u1) ⊕ θb1b2(v1) ∼h u2 ⊕ v2 in her(a1 ⊕ b1)∼.
A similar argument gives us θa2a1(u2) ⊕ θb2b1(v2) ∼h u1 ⊕ v1 in her(a2 ⊕ b2)∼. We conclude that
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[(a1 ⊕ b1, u1 ⊕ v1)] = [(a2 ⊕ b2, u2 ⊕ v2)]. That is, the addition is well-defined and obviously
is commutative. Finally one can check that for any [(a, u)] ∈ Cu1(A), [(a, u)] + [(0A, 1C)] =
[(a, u)] and that + and ≤ are compatible. □

Remark 2.1.8. (Cu1(A),+,≤) < PoM in general, since some elements might not be positive.

2.1.9. We now proceed to establish certain properties of the semigroup Cu1(A). In particular,
we consider a compact-containment relation as in the Cu-semigroup; see Definition 1.3.7.
Note that as for Cu, this auxiliary relation is entirely determined by the order. Also, we show
that (Cu1(A),≤) satisfies the Cuntz axioms mentioned in Definition 1.3.2.

Definition 2.1.10. Let (S ,≤) be an ordered monoid. For any s, t in S , we say that s is way-
below t and we write s ≪ t if, for any increasing sequence (zn)n∈N that has a supremum in
S such that sup

n∈N
zn ≥ t, there exists k such that zk ≥ s. This is an auxiliary relation on S (in

the sense of Definition 1.3.6 except that we do not require that 0 ≺ s for all s ∈ S ) called the
compact-containment relation. In particular s ≪ t implies s ≤ t.

Lemma 2.1.11. Let A be a C∗-algebra with stable rank one and let a ∈ A+. For any n ∈ N
write an := (a − 1/n)+. Then:
(i) ([an])n is a≪-increasing sequence in Cu(A) whose supremum is [a].
(ii)

AbGp− lim
−→

(K1(her an), χanam) ≃ (K1(her a), χana).

Proof. (i) It is well-known that [(a − ϵ)+] ≪ [a] for any ϵ > 0; see e.g [71, Proposition 2.61]
(ii) Observe that an ≤ am in A for any n ≤ m and hence the standard morphisms θanam and
θana are in fact canonical injections inm : her an ⊆ her am and in∞ : her an ⊆ her a with her a =
∪

n∈N
her an. We deduce that lim

−→n
(her an, θanam) ≃ (her a, θana). The result follows by functoriality

of the functor K1. □

Proposition 2.1.12. Let A be a C∗-algebra with stable rank one. Let (an)n be a sequence in
A+ such that an ≲Cu am, for any n ≤ m. Let a ∈ A+ be any representative of sup

n
[an] ∈ Cu(A)

obtained from axiom (O1). Then for any unitary element u ∈ her a∼, there exists a unitary
element un in her a∼n for some n ∈ N such that [(an, un)] ≤ [(a, u)] in Cu1(A).

Proof. For any n ∈ N, consider bn := (a − 1/n)+. Using Lemma 2.1.11, we know that
[bn] ≪ [a] in Cu(A) for any n ∈ N and that AbGp− lim

−→
(K1(her bn), χbnbm) ≃ (K1(her a), χbna).

Since we are in the category AbGp, the inductive limits are algebraic (see Paragraph 1.2.5).
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Thus, for any [u] ∈ K1(her a), we can find [un] ∈ K1(her bn) such that χbna([un]) = [u]. In
fact, since A has stable rank one, then so does her b∼n . So by Proposition 1.1.17, we can find a
unitary element un of her b∼n whose K1-class is [un].
On the other hand, ([am])m is an increasing sequence in Cu(A) whose supremum is [a] and
hence there exists m ∈ N such that [bn] ≤ [am] in Cu(A). So we can consider the unitary
element θbnam(un) in her a∼m. By transitivity of ≲1, we obtain that χama([θbnam(un)]) = χama ◦

χbnam([un]) = χbna([un]) = [u] and the result follows. □

Lemma 2.1.13. Let A be a C∗-algebra with stable rank one. Then any increasing sequence in
Cu1(A) has a supremum.

Proof. Let ([(an, un)])n∈N be an increasing sequence in Cu1(A). Then ([an])n∈N is an increasing
sequence in Cu(A). By (O1) in Cu(A), the sequence ([an])n∈N has a supremum [a] in Cu(A).
Now, let n ≤ m. Since [(an, un)] ≤ [(am, um)], we get that χanam([un]) = [um]. Besides, by
transitivity of ≲1, we obtain that χana([un]) = χama([um]) in K1(her a). Write [u] := χana([un]).
We deduce that [(a, u)] ≥ [(an, un)] in Cu1(A), for any n ∈ N.
Let us check that [(a, u)] is in fact the supremum of the sequence. Let [(b, v)] ∈ Cu1(A) such
that [(b, v)] ≥ [(an, un)] for every n ∈ N. Since [a] = sup

n∈N
[an], we have [b] ≥ [a] in Cu(A).

Using transitivity of ≲1, the following diagram is commutative:

K1(her a∼n )
χana

''

χanb

))
χanam

��

K1(her a∼) χab
// K1(her b∼)

K1(her a∼m)

χama
77

χamb

55

Hence for every n and m in N, we have χanb([un]) = χamb([um]) = χab([u]) in K1(her b). We
deduce that χab([u]) = [v] in K1(her b) and hence [(a, u)] ≤ [(b, v)]. □

Proposition 2.1.14. Let A be a C∗-algebra with stable rank one and let [(a, u)], [(b, v)] ∈
Cu1(A). Then [(a, u)] ≪ [(b, v)] if and only if [a] ≪ [b] in Cu(A) and χab([u]) = [v] in
K1(her b).

Proof. Suppose that [(a, u)] ≪ [(b, v)]. A fortiori [(a, u)] ≤ [(b, v)], so χab[u] = [v]. Now
let ([cn])n be an increasing sequence in Cu(A) whose supremum [c] satisfies [c] ≥ [b]. Write
w := θbc(v) and consider s := [(c,w)] ∈ Cu1(A). By Proposition 2.1.12, we know that there
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exists a unitary element wn of her c∼n for some n ∈ N such that χcnc([wn]) = [w]. Now de-
fine sk := [cn+k, θcncn+k(wn)], then (sk)k is an increasing sequence in Cu1(A). By the descrip-
tion of suprema obtained in Lemma 2.1.13, we know that (sk)k admits s as a supremum.
Plus, s ≥ [(b, v)] and since [(a, u)] ≪ [(b, v)], we deduce that there exists k ∈ N such that
[(a, u)] ≤ sk and hence that [a] ≤ [cn+k]. We conclude that [a] ≪ [b] in Cu(A).

Conversely, let [(a, u)], [(b, v)] ∈ Cu1(A) such that [a] ≪ [b] in Cu(A) and χab[u] = [v] in
K1(her b). Now let ([(cn,wn)])n be an increasing sequence in Cu1(A) that has a supremum in
Cu1(A) that we write [(c,w)]. Also suppose that [(b, v)] ≤ [(c,w)]. First, by transitivity of ≲1,
observe that χac([u]) = χbc ◦ χab([u]) = [w] in K1(her c).
Then, arguing as in the proof of [17, Lemma 4.3], since A has stable rank one, we can find a
strictly decreasing sequence (ϵn)n in R∗+ and unitary elements (un)n in (A ⊗ K)∼ such that

her(c1 − ϵ1)+ ⊆ u1(her(c2 − ϵ2)+)u∗1 ⊆ ... ⊆ un...u1(her(cn+1 − ϵn+1)+)u∗1...u
∗
n ⊆ ...

and such that sup
n

[(cn − ϵn)+] = [c] in Cu(A).

Hence, by Proposition 2.1.12 we can find a unitary element w̃k of (her(ck − ϵk)+)∼ such that
χ(ck−ϵk)+ck[w̃k] = [wk] in K1(her ck), for every k ∈ N. Now, using the same argument as in the
proof of Lemma 2.1.11, we observe that

AbGp− lim
−→

(K1(her(cn − ϵn)+), χ(cn−ϵn)+(cm−ϵm)+) ≃ (K1(her c), χ(cn−ϵn)+c).

On the other hand, since [a] ≪ [b] ≤ sup
n

[(cn − ϵn)+], there exists some l ∈ N large enough

such that [a] ≤ [(cl − ϵl)+] in Cu(A). Without loss of generality, we choose l ≥ k (we can
always go to bigger indices if necessary).
Finally, using again transitivity of ≲1, we have that χ(cl−ϵl)+c([w̃l]) = χclc ◦ χ(cl−ϵl)+cl([w̃l]) =
[w] = χac([u]) = χ(cl−ϵl)+c ◦ χa(cl−ϵl)+([u]) in K1(her c). Since we are in the category AbGp, the
inductive limits are algebraic (see Paragraph 1.2.5), and thus there exists some l′ ≥ l such that
χ(cl−ϵl)+(cl′−ϵl′ )+([w̃l]) = χ(cl−ϵl)+(cl′−ϵl′ )+ ◦ χ(acl−ϵl)+([u]). Composing with χ(cl′−ϵl′ )+cl′ on both sides,
we finally obtain that [wl′] = χacl′ [u] and hence [(a, u)] ≤ [(cl′ ,wl′)], which ends the proof. □

Corollary 2.1.15. Let A be a C∗-algebra with stable rank one and let [(a, u)] ∈ Cu1(A). Then
[(a, u)] is compact if and only if [a] is compact in Cu(A).

Theorem 2.1.16. Let A be a C∗-algebra with stable rank one. Then (Cu1(A),≤) satisfies
axioms (O1), (O2), (O3), and (O4).
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Proof. (O1) is done in Lemma 2.1.13.

(O2): Let s := [(a, u)] ∈ Cu1(A). We want to write s as the supremum of a ≪-increasing
sequence in Cu1(A). By (O2), we can find a≪-increasing sequence ([an])n in Cu(A) such that
sup

n
[an] = [a]. Write an any representative of [an] in (A ⊗ K)+. Using Proposition 2.1.12, we

know that we can find a unitary element un of her a∼n for some n ∈ N such that [(an, un)] ≤
[(a, u)]. Now we consider sk := [(an+k, θanan+k(un))], for any k ∈ N. Then, by Proposition 2.1.14
we deduce that (sk)k is a≪-increasing sequence in Cu1(A). By the description of suprema ob-
tained in Lemma 2.1.13, sup

k
sk = s.

(O3): Let [(a1, u1)] ≪ [(b1, v1)] and [(a2, u2)] ≪ [(b2, v2)]. We already know that [(a1, u1)] +
[(a2, u2)] ≤ [(b1, v1)] + [(b2, v2)] and that [a1] + [a2] ≪ [b1] + [b2] in Cu(A). The conclusion
follows from Proposition 2.1.14.

(O4): Let ([(an, un)])n∈N and ([(bn, vn)])n∈N be two increasing sequences in Cu1(A). Let [(a, u)] :=
sup
n∈N

[(an, un)] and [(b, v)] := sup
n∈N

[(bn, vn)]. Now we define ([(cn,wn)])n∈N := ([(an, un)])n∈N +

([(bn, vn)])n∈N. Since [cn] = [an] + [bn] in Cu(A) and Cu(A) satisfies (O4), we have sup
n∈N

[cn] =

[a⊕b]. Also, we know that χana([un]) = [u] and χbnb([vn]) = [v], and hence we obtain χcnc(un⊕

vn) = u ⊕ v. We conclude that sup and + are compatible in Cu1(A), using Lemma 2.1.13. □

2.1.17. We have proved that Cu1(A) is a semigroup that satisfies the Cuntz axioms. The aim
now is to define a functor Cu1 from the category C∗ to a suitable category of semigroups as
was done for the Cu-semigroup; see [4, Chapter 3]. The category Cu would then be a natural
candidate for the codomain category, however the underlying ordered monoid in Cu1(A) is
usually not positively ordered. Thus we have to find a suitable category and study its relation
with the category Cu.

Definition 2.1.18. Let PoM∼ be the category of ordered monoids, -not necessarily positively
ordered-, whose morphisms are ordered monoid morphism. Now we define the category Cu∼

as follows:

Ob(Cu∼) : Ordered monoids satisfying the Cuntz axioms and such that 0 ≪ 0.
Morph(Cu∼) : PoM∼-morphisms that respect suprema of increasing sequences and the
compact-containment relation.

2.1.19. We will see in another section of the chapter that the category Cu∼ defined is indeed a
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suitable one to define a continuous functor Cu1 : C∗ −→ Cu∼, where we recall that C∗ denotes
the full subcategory consisting of separable C∗-algebras with stable rank one. To do so, we
use an analogous process as done in [4, Chapter 2 - Chapter 3] for the Cu-semigroup, and thus
we are going to first consider a pre-completed version of Cu1, that we will denote by W1, to
then extend the result to Cu1 using Category Theory techniques.
Before going into details, let us end this section with a categorical link between PoM,Cu and
their respective analogous versions PoM∼,Cu∼.

Definition 2.1.20. Let M ∈ PoM∼ and let S ∈ Cu∼. We define their positive cones, that we
write M+ and S + respectively, as the subset of positive elements. Observe that M+ ∈ PoM and
S + ∈ Cu.

Lemma 2.1.21. Let C be either PoM or Cu. Then C is a coreflective subcategory of C∼. A
fortiori it is a full subcategory. Also, the following functor:

ν+ : C∼ −→ C
S −→ S +
f −→ f+

is a coreflector. (See Paragraph 1.2.4.)

Proof. Since C∼-morphisms respect ≤, we deduce that ν+ is a well-defined functor. Moreover,
one can check that HomC∼(i(S ),T ) ≃ HomC(S , ν+(T )) for any S ∈ C and T ∈ C∼. We get that
the inclusion functor i : C ↪−→ C∼ is left adjoint to ν+, which implies that C is a full (obviously
faithful) coreflective subcategory of C∼. □

2.2 A pre-completed version of Cu1: W1

2.2.1. In this section, we define a precompleted version of our invariant, that we write W1,
in a slightly more general categorical context. For that matter, we will introduce categories
analogous to PreW and W introduced in [4, Chapter 2] that we will call PreW∼ and W∼.
Finally, even if all the following is adapted to our setting, we will refer each time the reader
to its analogous version in [4].

Definition 2.2.2. Let S ∈ PoM∼ An auxiliary relation on, S is a binary relation ≺ such that:
(i) For any s, t ∈ S such that s ≺ t, then s ≤ t.
(ii) For any s, t, s′, t′ ∈ S such that s ≤ s′ ≺ t′ ≤ t, then s ≺ t.
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Observe that ≺ is transitive. Also the compact-containment relation in Cu1 is an auxiliary
relation, with the additional feature that it is entirely determined by the order.

2.2.3. (cf [4, §2.1.1])
Let S ∈ PoM∼ and consider an auxiliary relation ≺ on S . For any s ∈ S we denote s≺ := {s′ ∈
S | s′ ≺ s}. Let us introduce the W-axioms:
(W1): For any s ∈ S , there exists a ≺-increasing sequence (sk)k in s≺ such that for any s′ ∈ s≺,
there exists some k such that s′ ≺ sk.
(W2): For any s ∈ S , we have s = sup s≺.
(W3): Addition and ≺ are compatible.
(W4): For any s, t, x ∈ S such that x ≺ s + t, we can find s′, t′ ∈ S such that s′ ≺ s, t′ ≺ t and
x ≺ s′ + t′.

Definition 2.2.4. (cf [4, Definition 2.1.2])
A PreW∼-semigroup is a pair (S ,≺), where S ∈ PoM∼ and ≺ is an auxiliary relation on S such
that (S ,≺) satisfies axioms (W1)-(W3)-(W4) and such that 0 ≺ 0.
If moreover (S ,≺) satisfies (W2), we say it is a W∼-semigroup. Whenever the context is clear,
we omit the reference to ≺ and simply write S ∈ PreW∼.

A W∼-morphism between any two S ,T ∈ PreW∼ is a PoM∼-morphism g : S −→ T that
respects the auxiliary relation and satisfies the following W∼-continuity axiom:
(M) For any s ∈ S and t ∈ T such that t ≺ g(s), there exists s′ ∈ s≺ such that t ≤ g(s′).

Finally, we define the categories PreW∼ and W∼ whose objects are respectively PreW∼-
semigroups and W∼-semigroups and whose morphisms are W∼-morphisms. Observe that W∼

is a full subcategory of PreW∼.

2.2.5 (Completion of W∼). The next step is to show that W∼ is in fact a reflective subcate-
gory of PreW∼. That is, the inclusion functor W∼ ↪−→ PreW∼ has a left-adjoint (see Para-
graph 1.2.4). We will use a categorical tool described in [45]: the completion property.

Definition 2.2.6. Let C be category and D be a full subcategory of C. Let C ∈ C. A D-
completion of C is a couple (D, α), where D ∈ D and α ∈ HomC(C,D), such that the following
holds:
For any L ∈ D, f ∈ HomC(C, L), there exists a unique g ∈ HomD(D, L) such that the following
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diagram is commutative:
C α //

f
��

D

g
��

L
Proposition 2.2.7. [45, Definition 2.1] A D − completion (D, α) of C ∈ C is unique (up to
isomorphism). That is, if (D′, α′) is another D − completion of C then there exists a unique
D-isomorphism d : D −→ D′ such that the following diagram is commutative:

C

f

��

α //

α′

%%
D d //

gα

��

D′

gα′

rrL

2.2.8. The definition below is equivalent to the one in Paragraph 1.2.4.

Definition 2.2.9. (Reflective subcategory - Completion property) [45, Definition 2.1]
Let C be a category. ThenD is a reflective subcategory of C if and only if for any C ∈ C, there
exists aD− completion of C.

Proposition 2.2.10. (cf [4, Proposition 2.1.6]) W∼ is a (full) reflective subcategory of PreW∼.

Proof. Let (S ,≺) be a PreW∼ semigroup. We will construct a W∼-completion of S . Let s, t
be in S . We recall that we denote s≺ := {s′ ∈ S | s′ ≺ s}. Consider the binary relation on S
given by s ⪯ t if s≺ ⊆ t≺. By antisymmetrizing it, we obtain an equivalence relation ∼ on S .
That is, s ∼ t if, s ⪯ t and t ⪯ s. Now, we consider µ∼(S ) := S/∼. We define a partial order
on µ(S ) given by [s] ≤ [t] if, s ⪯ t and we define addition on equivalence classes induced by
the addition on S . We finally get that (µ∼(S ),+,≤) ∈ PoM∼. For s, t ∈ S , we define [s] ≺ [t]
in µ∼(S ) if there exists t′ ∈ t≺ such that [s] ≤ [t′]. Observe that [0] ≺ [0].
Arguing as in [4, Proposition 2.1.6], we obtain µ∼(S ) ∈ W∼. Let ηS : S −→ µ∼(S ) be the
W∼-morphism that assigns to each element in S its equivalence class. Then (µ∼(S ), ηS ) is a
W∼-completion of S . We conclude, using Definition 2.2.9, that µ∼ is a reflector from PreW∼

to W∼. □

2.2.11. The next step is to build direct limits in PreW∼ using the algebraic limit in PoM∼

which is the same as for PoM (see Paragraph 1.2.5). This will allow us to compute inductive
limits in W∼ through the reflector µ∼ obtained in the proof of Proposition 2.2.10.
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Definition 2.2.12. Let (S i, φi j)i∈I be an inductive system in PreW∼. We define S := PoM∼ −

lim
−→

(S i, φi j)i∈I constructed as in Paragraph 1.2.5. We define an auxiliary relation ≺ on S as
follows: Let s, t ∈ S . We say s ≺ t if, φik(si) ≺ φ jk(t j), where si ∈ S i, t j ∈ S j are representatives
of s, t respectively and k ≥ i, j.

Proposition 2.2.13. (i) The category PreW∼ has finite sums.
(ii) The category PreW∼ has inductive limits. More precisely, let (S i, φi j)i∈I be an inductive
system in PreW∼ and let S := PoM∼ − lim

−→
(S i, φi j). Then (S ,≺) ≃ PreW∼ − lim

−→
(S i, φi j), where

≺ is constructed as in Definition 2.2.12.

Proof. (i) One can define component-wise addition, order and auxiliary relation.
(ii) The proof is virtually the same as in [4, Theorem 2.1.8] and we obtain that ≺ is an auxiliary
relation on (S ,≺) that satisfies (W1), (W3) and (W4). Finally, since 0S i ≺ 0S i for any i, we
trivially have 0S ≺ 0S . □

Corollary 2.2.14. W∼ has inductive limits. Moreover:

W∼ − lim
−→

(S i, φi j) = µ∼(PreW∼ − lim
−→

(S i, φi j))

2.2.15. (Local C∗-algebras)
Now that we have a well-defined categorical setup, we will define a functor from C∗loc to W∼,
termed W1, and show that it is continuous. First let us recall some definitions and properties
about C∗loc. We refer the reader to [4, §2.2] for more details.

A local C∗-algebra A is an upward-directed union of C∗-algebras. That is, there exists a
family of complete ∗-invariant subalgebras {Ai}i such that for any i, j, there exists k ≥ i, j such
that Ai ∪ A j ⊆ Ak and A = ∪

i
Ai.

If A is a local C∗, then so is Mk(A) for any k ∈ N. In fact, as done for C∗-algebra, Mk(A) sits
as upper-left corner inside Mk′(A) for any k′ ≥ k and we can picture any Mk(A) as a corner of
M∞(A) := ∪

k
Mk(A), which is again a local C∗-algebra.

Observe that the completion of a local C∗-algebra A, that we write A, is a C∗-algebra. In par-
ticular, we have Mk(A) ≃ Mk(A) for any k ∈ N and M∞(A) ≃ A⊗K . Further A is closed under
functional calculus.
Moreover, for any local C∗-algebra A := ∪

i
Ai, if each Ai has stable rank one, then by [60,

Theorem 5.1], we get that A has stable rank one. We may abuse the language and say that A
has stable rank one.
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We now consider C∗loc, the category whose objects are separable local C∗-algebras that have
stable rank one and morphisms are ∗-homomorphisms. Obviously, C∗ is a full subcategory of
C∗loc. In fact, C∗ is a reflective subcategory of C∗loc with the following reflector:

γ : C∗loc −→ C∗

A 7−→ A
ϕ 7−→ ϕ

where ϕ is the (unique) extension of ϕ over A.
Finally, let (Ai, φi j)i∈I be an inductive system in C∗loc. As in [4, §2.2.8], we consider the al-
gebraic inductive limit Aalg :=

⊔
i∈I

Ai/∼ (see Paragraph 1.2.5) with the following pre-norm:

∥x∥ := inf
j
{∥φi j(x)∥}), for x ∈ Ai. We now define:

C∗loc − lim
−→

(Ai, φi j) := (Aalg/N, ∥ ∥)

where N := {a ∈ Aalg, ∥a∥ = 0}.
Besides, φi j induces a ∗-homomorphism that we also write φi j : M∞(Ai) −→ M∞(A j) and we
have C∗loc − lim

−→
(M∞(Ai), φ∼i j) ≃ M∞(C∗loc − lim

−→
(Ai, φi j)). See [4, §2.2.8].

Remark 2.2.16. A notion of Bass stable rank was first introduced for unital rings, (see [7,
Definition 4.0], [60, Proposition 2.2]) and by [40, Theorem], one could conjecture that a C∗loc-
algebra A has Bass stable rank one if and only if its completion A has stable rank one.

2.2.17. (The precompleted Cuntz semigroup W(A))
We briefly recall the definition of the precompleted Cuntz semigroup of a C∗-algebra and we
refer the reader to [4, §2.2] for details and proofs. In fact, we give an equivalent definition
that can be found in [4, Remark 3.2.4]; see also [4, Lemma 3.2.7].
Let A ∈ C∗loc. We define W(A) := {[a] ∈ Cu(A) | a ∈ M∞(A)+}. Obviously, (W(A),+,≤) ∈
PoM as a submonoid of Cu(A). Now we equip W(A) with the following auxiliary relation.
Given [a], [b] ∈W(A), we write [a] ≺ [b] if:

a ≲Cu (b − ϵ)+ in M∞(A)+ for some ϵ > 0.

We have that (W(A),≺) ∈W∼. (See [4, Proposition 2.2.5].)

Lemma 2.2.18. Let A ∈ C∗loc and let B := A be its completion in C∗. Then, for any a ∈ A+ we
have aAa = aBa.
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Proof. The direct inclusion is trivial. Now let x ∈ aBa. Then there exists a sequence (bk)k in
B such that x = lim

k
abka. Furthermore, for any k ∈ N, there exists a sequence (ak,i)i in A such

that bk = lim
i

ak,i. We deduce that x = lim
k

a(lim
i

ak,i)a = lim
k

lim
i

(aak,ia). Thus x ∈ aAa. □

Definition 2.2.19. Let A ∈ C∗loc and let B := A be its completion in C∗. For a ∈ A+, we define
the hereditary subalgebra generated by a as her a := aBa.

2.2.20. We have now all the tools to define a precompleted version of Cu1 that we will denote
by W1(A), as a submonoid of Cu1(A).

Definition 2.2.21. Let A ∈ C∗loc. We define W1(A) := {[(a, u)] ∈ Cu1(A) | a ∈ M∞(A)+}.
Obviously, (W1(A),+,≤) ∈ PoM∼ as a submonoid of Cu1(A). Now we equip W1(A) with the
following binary relation. Let [(a, u)], [(b, v)] ∈W1(A), we say [(a, u)] ≺ [(b, v)] if: a ≲Cu (b − ϵ)+ in M∞(A)+ for some ϵ > 0.

[θab(u)] = [v] in K1(her b∼).

Remark 2.2.22. Let A ∈ C∗ and let [(a, u)], [(b, v)] ∈ Cu1(A). Then [(a, u)] ≺ [(b, v)] if and
only if [a] ≺ [b] in W(A) and χab([u]) = [v] in K1(her b).

Lemma 2.2.23. Let A ∈ C∗loc and let a ∈ A+. For any n ∈ N write an := (a − 1/n)+. Then:
(i) ([an])n is a ≺-increasing sequence in W(A). Besides, ([an])n has a supremum in W(A) and
sup

n
[an] = [a].

(ii)
AbGp− lim

−→
(K1(her an), χanam) ≃ (K1(her a), χana).

Proof. Combine the fact that A has stable rank one, with Definition 2.2.19 and the result
follows from Lemma 2.1.11. □

Corollary 2.2.24. Let A ∈ C∗loc. Let (an)n be a sequence in A+ such that an ≲Cu am for any
n ≤ m. Also we suppose that [an]n has a supremum in W(A) that we write [a]. Let a ∈ A+ be
any representative of sup

n
[an] ∈ W(A). Then for any unitary element u ∈ her a∼, there exists a

unitary element un in her a∼n for some n ∈ N such that [(an, un)] ≤ [(a, u)] in W1(A).

Proof. Again, combine the fact that A has stable rank one, with Definition 2.2.19 and the
result follows from Proposition 2.1.12. □
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Proposition 2.2.25. [4, Proposition 2.2.5]
Let A ∈ C∗loc. The relation defined in Definition 2.2.21 is an auxiliary relation and (W1(A),≺)
satisfies axioms (W1),(W2),(W3) and (W4). That is, (W1(A),≺) ∈ W∼. Again, we may omit
the reference to ≺ and simply write W1(A) ∈W∼.

Proof. Using Remark 2.2.22, it follows that ≺ is an auxiliary relation on W1(A). Namely, if
[(a, u)] ≤ [(b, v)] ≺ [(c,w)] ≤ [(d, z)], then we have χad([u]) = [z] and a ≲Cu (d − ϵ)+ for some
ϵ > 0 since b ≲Cu (c − δ)+ for some δ > 0. Thus, [(a, u)] ≺ [(d, z)].
Now, given [(a, u)] ∈W1(A), use Lemma 2.2.23 to construct a sequence in W1(A) where [((a−
1/n)+, un)] ≺ [(a, u)] and in such a way that [(a, u)] = sup

n
[((a−1/n)+, un)]; see Lemma 2.1.13.

Thus (W2) holds in W1(A).
If [(b, v)] ≺ [(a, u)], then, by Proposition 2.1.14, we have [(b, v)] ≪ [(a, u)] in Cu1(A) and thus
[(b, v)] ≤ [((a − 1/n)+, un)] for some n ∈ N. Hence (W2) holds. To check (W3) and (W4) is
routine. □

Proposition 2.2.26. Let φ : A −→ B be a ∗-homomorphism between A, B ∈ C∗loc. Observe that
φ naturally extends to a ∗-homomorphism φ : M∞(A) −→ M∞(B) (we use the same notation).
We write φ := γ(φ) and φ∼ the unitized morphism between M∞(A)

∼
−→ M∞(B)

∼
. Then the

map:
W1(φ) : W1(A) −→W1(B)

[(a, u)] 7−→ [(φ(a), φ∼(u))]

is a W∼-morphism.

Proof. Let a ∈ M∞(A)+. Using Paragraph 1.1.4, the restriction φ| her a : her a −→ herφ(a) of φ
gives us the following commutative square:

her a

��

φ // her(φ(a))

��
her a∼

φ∼
// (herφ(a))∼

Hence, φ∼(u) is a unitary element of (herφ(a))∼ and we deduce that [(φ(a), φ∼(u))] ∈ W1(B).
Let us check it does not depend on the representative (a, u) chosen. Let [(a, u)], [(b, v)] ∈
W1(A) such that [(a, u)] ≤ [(b, v)]. Then we get a ≲Cu b in M∞(A). Since φ is a ∗-homo-
morphism, we deduce that φ(a) ≲Cu φ(b) in M∞(B). Further, using [57, Theorem 26.55],
one can show that for any partial isometry α of (A ⊗ K)∗∗ that realizes one of our standard
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morphisms θab,α (see Remark 2.1.5) between her a and her b, then φ∗∗(α) is a partial isometry
of (B ⊗ K)∗∗ that realizes one of our standard morphisms θφ(a)φ(b),φ∗∗(α) between herφ(a) and
φ(b), where φ∗∗ : (A ⊗K)∗∗ −→ (B⊗K)∗∗ is a ∗-homomorphism induced by φ. It follows that
the following diagram is commutative:

her a∼
θab,α //

φ∼

��

her b∼

φ∼

��
(herφ(a))∼

θφ(a)φ(b),φ∗∗(α)

// (herφ(b))∼

from which we deduce that θφ(a)φ(b)(φ
∼(u)) ∼ φ∼(v) and thus [(φ(a), φ∼(u))] ≤ [(φ(b), φ∼(v))].

So W1(φ) is indeed well-defined, respects ≤ and it is easy to check that W1(φ) also respects
addition. We conclude that W1(φ) is a PoM∼-morphism.

Since φ is a ∗-homomorphism, we have that φ((a− ϵ)+) = (φ(a)− ϵ)+ for any a ∈ M∞(A)+ and
any ϵ > 0.
Now, let [(a, u)], [(b, v)] ∈ W1(A) such that [(a, u)] ≺ [(b, v)]. That is, there exists ϵ > 0 such
that [a] ≤ [(b − ϵ)+] in W(A) and χab([u]) = [v] in K1(her b). Then using the above and conti-
nuity of φ, we obtain that [φ(a)] ≤ [(φ(b) − ϵ1B∼)+] in W(B) and χφ(a)φ(b)([φ

∼(u)]) = [φ∼(v)] in
K1(herφ(b)). We conclude that W1(φ) also respects ≺.

Further, we have to check that W1(φ) satisfies the W∼-continuity axiom (see Definition 2.2.4).
Let us write f := W1(φ). Let x := [(a, u)] ∈ W1(A) and y := [(b, v)] ∈ W1(B) such that
y ≺ f (x). We have to find x′ ∈W1(A) such that x′ ≺ x and y ≤ f (x′).
We know that there exists k > 0 such that [b] ≤ [(φ(a) − 1/k)+] in W(B) and χbφ(a)([v]) =
[φ∼(u)] in K1(herφ(a)). On the other hand, observe that ([(a − 1/n)+])n is an increasing se-
quence in W(A) that has admits [a] as supremum in W(A). Thus, by Corollary 2.2.24, we can
find a unitary element un ∈ her((a − 1/n)+)∼ for some n ∈ N, such that [((a − 1/n)+, un)] ≤
[(a, u)] in W1(A). In particular, [((φ(a) − 1/m)+, φ

∼(θ(a−1/n)+(a−1/m)+(un)))] ≤ [(φ(a), φ∼(u))] in
W1(B) for any m ≥ n.
Now choose m > k, n, we get the following: [b] ≤ [(φ(a) − 1/k)+] ≤ [(φ(a) − 1/m)+] in W(B).

[θbφ(a)(v)] = [θ(φ(a)−1/n)+φ(a)(φ
∼(un))] in K1(herφ(a)).
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By transitivity of ≲1, we obtain:

[θ(φ(a)−1/m)+φ(a) ◦ θb(φ(a)−1/m)+(v)] = [θ(φ(a)−1/m)+φ(a) ◦ θ(φ(a)−1/n)+(φ(a)−1/m)+(φ
∼(un))] in K1(herφ(a)).

Finally, by Lemma 2.2.23, we conclude that there exists l ≥ m such that: [b] ≤ [(φ(a) − 1/l)+] in W(B).
[θb(φ(a)−1/l)+(v)] = [θ(φ(a)−1/n)+(φ(a)−1/l)+(φ

∼(un))] in K1(her(φ(a) − 1/l)+).

Write x′ := [((a − 1/l)+, θ(a−1/n)+(a−1/l)+(un))]. Then we already know that x′ ≺ x in W1(A) and
the above exactly states that y ≤ f (x′) in W1(B). □

Corollary 2.2.27. The assignment A 7−→W1(A) from C∗loc to W∼ is a functor.

Theorem 2.2.28. The functor W1 : C∗loc −→W∼ is continuous.

Proof. This proof is an adapted version of [4, Theorem 2.2.9].
Let (Ai, φi j)i∈I be an inductive system in C∗loc and let (Aalg/N, φi∞) be its inductive limit. With-
out loss of generality, we can suppose that each Ai ≃ M∞(Ai); see Paragraph 2.2.15. Thus, we
may suppose that each element of W(Ai) is realized by a positive element of Ai.
Let σi j := W1(φi j) and consider the inductive system (W1(Ai), ψi j)i∈I in PreW∼. We denote
by (S , σi∞) its inductive limit in PreW∼. Observe that (W1(Aalg/N),W1(φi∞)) is a cocone for
the inductive system; see Paragraph 1.2.3. Hence from universal properties, we deduce that
there exists a unique w1 : S −→ W1(Aalg/N) such that for all i ∈ I, the following diagram
commutes:

W1(Ai)
σi∞ //

W1(φi∞) &&

S

w1

��
W1(Aalg/N)

Moreover we know from Proposition 2.2.10 that (µ∼(S ), ηS ) is the inductive limit in W∼ of the
inductive system above, where ηS : S −→ µ∼(S ). Hence, there exists a unique θ : µ∼(S ) −→
W1(Aalg/N) such that the following diagram commutes:

S
ηS //

w1 $$

µ∼(S )

θ

��
W1(Aalg/N)
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Let us sum up the context with the following commutative diagram:

W1(Ai)

σi j=W1(φi j)

��

σi∞

""

W1(φi∞)

""
S

∃!w1

//

ηS !!

W1(Aalg/N)

µ∼(S )
∃!θ

88

W1(A j)

σ j∞

EE

W1(φ j∞)

FF

To complete the proof, let us show that θ is a W∼-isomorphism.

Surjectivity: Let [(a, u)] ∈W1(Aalg/N). Since a ∈ Aalg/N, we know that there exists ak ∈ (Ak)+
such that φk∞(ak) = a. Also, u is a unitary element of her a∼ = φk∞(ak)(Aalg/N)φk∞(ak)

∼

. Now,
observe that C∗ − lim

−→ j>k
(herφk j(ak), φ jl) ≃ (her a, φ j∞). Hence for any ϵ > 0, there exists j ≥ k

and a unitary element u j of herφk j(ak)∼ such that ∥u − φ∼j∞(u j)∥ < ϵ. In particular, for ϵ < 2,
we obtain a unitary element u j of herφk j(ak)∼ such that [u] = [φ∼j∞(u j)] in K1(her a).
We compute that W1(φ j∞)([(φk j(ak), u j)]) = [(φk∞(ak), φ j∞

∼(u j))] = [(a, u)]. Thus, by the com-
mutativity of the diagram above we obtain w1◦σ j∞([(φk j(ak), u j)]) =W1(φ j∞)([(φk j(ak), u j)]) =
[(a, u)] as desired. We conclude that w1 is surjective and hence that θ is surjective.

Injectivity: Let us show that for any s, t ∈ S such that w1(s) ≤ w1(t) then s ≤ t. In fact,
it is sufficient to prove that for any s, t ∈ S such that w1(s) ≤ w1(t) then s≺ ⊆ t≺. Indeed
this would imply that ηS (s) ≤ ηS (t), and since im(ηS ) = µ∼(S ), we would conclude that θ is
order-embedding.
Let s, t ∈ S such that w1(s) ≤ w1(t) and let s′ ≺ s. Since the inductive limit is algebraic (see
Proposition 2.2.13), there exists sk, s′k, tk ∈ W1(Ak) such that σk∞(s′k) = s′, σk∞(sk) = s and
σk∞(tk) = t and such that s′k ≺ sk in W1(Ak).
Now pick a′, a, b ∈ (Ak)+ and unitary elements u′, u, v in the respective hereditary subalgebras
such that s′k = [(a′, u′)], sk = [(a, u)] and tk = [(b, v)]. We already know that [a′] ≺ [a] in
W(Ak) and that [θa′a(u′)] = [u] in K1(her a∼). On the other hand, since w1(s) ≤ w1(t), by the
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commutativity of the diagram, we deduce that: [φk∞(a′)] ≺ [φk∞(a)] ≤ [φk∞(b)] in W(Aalg/N).
[θφk∞(a′)φk∞(b)(φk∞

∼(u′))] = [θφk∞(a′)φk∞(b)(φk∞
∼(u))] = [φk∞

∼(v)] in K1(herφk∞(b)).

By the proof [4, Theorem 2.2.9], we deduce that there exists some j ≥ k and some δ > 0 such
that:

[φk j(a′)] ≤ [(φk j(b) − δ)+] in W(A j).

Finally, by Lemma 2.2.23, we conclude that there exists l ≥ k, j such that: [φkl(a′)] ≤ [(φkl(b) − δ)+] in W(Al).
[θφkl(a′)φkl(b)(φkl

∼(u′))] = [φkl
∼(v)] in K1(herφkl(b)).

We conclude that σkl(s′k) ≺ σkl(tk), which ends the proof. □

2.3 The functor Cu1

2.3.1. Now that we have shown the continuity of the functor W1 : C∗loc −→ W∼, we will
show that Cu∼ is a full reflexive subcategory of W∼. We will then get inductive limits in Cu∼.
Further, we define a functor Cu1 : C∗ −→ Cu∼, and prove that it is continuous with respect to
inductive limits. We will adapt arguments from [4, Chapter 3].

Lemma 2.3.2. (cf [4, Lemma 3.1.4])
Let f : M −→ N be a PoM∼ − morphism between two Cu∼-semigroups. Then the following
are equivalent:
(i) f preserves suprema of increasing sequences.
(ii) f satisfies the W∼-continuity axiom.
(iii) For any a ∈ S , we have f (a) = sup f (a≪).

Proof. The proof is virtually the same as in [4, Lemma 3.1.4] as it does not use the fact that
the underlying monoids are positively ordered. □

Corollary 2.3.3. Cu∼ is a full subcategory of W∼.

Proposition 2.3.4. (cf [4, Proposition 3.1.6])
Let (S ,≺) be a PreW∼-semigroup. Then there exists a Cu∼-semigroup γ∼(S ) together with a
W∼-morphism αS : S −→ γ∼(S ) satisfying the following conditions:
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(i) The morphism αS is an ‘auxiliary-embedding’ in the sense that s′ ≺ s whenever α(s′) ≪
α(s).
(ii) The morphism αS has a ‘dense image’ in the sense that for any two t′, t ∈ γ(S ) such that
t′ ≪ t there exists s ∈ S such that t′ ≤ α(s) ≤ t.

Proof. The proof is virtually the same as in [4, Proposition 3.1.6] as it does not use the fact
that the underlying monoids are positively ordered. We still give a sketch of the proof for the
sake of completeness.
Let (S ,≺) be a PreW∼-semigroup. Consider S := {≺-increasing sequences in S }. We denote
such sequences by a := (an)n∈N. Now for any two ≺-increasing sequences a, b of S , we write
that a ⊂ b if for every k ∈ N, there exists n ∈ N such that ak ≺ bn. Also, we naturally define
a + b := (an + bn)n in S .
We antisymmetrize the relation ⊂ to get an equivalence relation on S and we define γ∼(S ) :=
S̄ /∼. We get an induced addition on γ∼(S ). Besides, the relation ⊂ on S induces a partial
order on γ∼(S ). Finally the sequence (0, 0, ...) is an element of S since 0 ≺ 0. Thus the set
(γ∼(S ),≤) belongs to PoM∼, whose neutral element is [0].
Further, we refer the reader to the proof of [4, Proposition 3.1.6] to obtain that (γ∼(S ),≤)
satisfies axioms (O1), (O2), (O3), (O4).
Finally, let us define α : S −→ γ∼(S ) as follows: For any a ∈ S , fix a := (an)n∈N one of
the sequences that satisfies axiom (W1) and set αS (a) := [a]. One can check that αS (a) does
not depend on the (an)n∈N chosen and it is straightforward to check that αS is an ‘auxiliary-
embedding’with ‘dense image’. □

Theorem 2.3.5. (cf [4, Theorem 3.1.8])
Let S be a PreW∼-semigroup and T a Cu∼ −semigroup. Let η : S −→ T be a W∼-morphism.
Then the following are equivalent:
(i) η is an auxiliary-embedding and has a dense image as in Proposition 2.3.4.
(ii) (T, η) is a Cu∼ −completion of S in the sense of Definition 2.2.9.

Proof. The proof is virtually the same as in [4, Theorem 3.1.8] as it does not use the fact that
the underlying monoids are positively ordered. □

Corollary 2.3.6. Cu∼ is a (full) reflective subcategory of PreW∼. In particular, Cu∼ has in-
ductive limits.

Proof. Combine Theorem 2.3.5 with Proposition 2.3.4 and use the completion property; see
Definition 2.2.9. □
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2.3.7. We have everything we need to properly define the functor Cu1 and prove that it is
continuous. We recall that we denote by C∗ the full subcategory of separable C∗-algebras with
stable rank one. Also, we recall that for A ∈ C∗, we have already defined (Cu1(A),≤) and
proved that it is a Cu∼-semigroup; see Theorem 2.1.16.
Finally, observe that for any A ∈ C∗, the compact-containment relation on Cu1(A) and the
auxiliary relation on W1(A ⊗ K) agree; see [4, Remark 3.2.4]. Thus, we have that Cu1(A) =
W1(A ⊗ K) as Cu∼-semigroups.

Proposition 2.3.8. Let φ : A −→ B a ∗-homomorphism between A, B ∈ C∗. Observe that φ
naturally extends to a ∗-homomorphism that we also write φ : A ⊗ K −→ B ⊗ K . We denote
by φ∼ the unitized morphism between A ⊗ K∼ −→ B ⊗ K∼. Then:

Cu1(φ) : Cu1(A) −→ Cu1(B)
[(a, u)] 7−→ [(φ(a), φ∼(u))]

is a Cu∼-morphism.

Proof. Using the identification of Paragraph 2.3.7 combined with Proposition 2.2.26, we get
the result. □

Theorem 2.3.9. There exists a natural isomorphism γ∼◦W1 ≃ Cu1 ◦γ, where γ is the reflector
from C∗loc to C∗, see Paragraph 2.2.15. In particular, for any A ∈ C∗, there is a (natural) Cu∼-
isomorphism between Cu1(A) ≃ γ∼(W1(A)).

Proof. The aim of the proof is to show that (Cu1(γ(A),W1(i)) is a Cu∼-completion of W1(A)
for any A ∈ C∗loc, where W1(i) is built as follows:
Let A ∈ C∗loc, write B := M∞(A) ∈ C∗loc. Consider the canonical inclusion i : B ↪−→ B ≃ A⊗K .
Then i induces a W∼-morphism W1(i) : W1(B) −→ W1(B). On the other hand, we know that
W1(B) = W1(A) and that W1(B) ≃ Cu1(A) (see Paragraph 2.3.7). Thus, we obtain a W∼-
morphism W(i) : W1(A) −→ Cu1(A) (we use the same notation). By Theorem 2.3.5, we only
have to check that W1(i) is an auxiliary-embedding and that it has a dense image as defined in
Proposition 2.3.4.
Let s, s′ ∈ W1(A) such that W1(i)(s′) ≪ W1(i)(s′). By Paragraph 2.3.7, we deduce that
W1(i)(s′) ≺ W1(i)(s′). Also, observe that W1(i) is in fact an order embedding (even more, it
is the canonical injection). Thus, we conclude that s ≺ s′ and hence W1(i) is an ‘auxiliary-
embedding’.
Let t, t′ ∈ Cu1(γ(A)) such that t′ ≪ t. Now pick a, a′ ∈ (γ(A) ⊗ K)+ and unitary elements
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u, u′ in the respective hereditary subalgebras of a, a′, such that t := [(a, u)] and t′ := [(a′, u′)].
Then, we know that [a′] ≪ [a] in Cu(A) and that χa′a([u′]) = [u]. Using [4, Lemma 3.2.7],
there exists b ∈ M∞(A)+ such that [a′] ≤ [b] ≤ [a] in Cu(A). Now consider s := [(b, θa′b(u))] ∈
W1(A), we get that t′ ≤ W1(i)(s) ≤ t in Cu1(A). It follows that W1(i) has a ‘dense image’and
hence that (W1(i),Cu1(γ(A))) is a Cu∼-completion of W1(A). □

Corollary 2.3.10. The functor Cu1 : C∗ −→ Cu∼ is continuous. More precisely, given an
inductive system (Ai, ϕi j)i∈I in C∗, then:

Cu∼ − lim
−→

(Cu1(Ai),Cu1(ϕi j)) ≃ Cu1(C∗ − lim
−→

((Ai, ϕi j))) ≃ γ∼(W∼ − lim
−→

(W1(Ai),W1(ϕi j))).

2.4 Algebraic Cu∼-semigroups and PoM∼-completion

2.4.1. In this last section, we will briefly introduce algebraic Cu∼-semigroups in order to link
the notion of real rank zero for a C∗-algebra A, that ensures a lot of projections, with the
notion of ‘density’of compact elements in Cu1(A). In fact, as compact elements of Cu1(A) are
entirely determined by to the ones of its positive cone Cu(A) (see Corollary 2.1.15), all results
from Cu(A) will apply here. These can be found in [4, §5.5].

2.4.2. We have already defined a functor ν+ : Cu∼ −→ Cu (see Lemma 2.1.21) that associates
to every Cu∼-semigroup S its positive cone S +. Let us do something similar to recover the
compact elements of a Cu∼-semigroup.

Lemma 2.4.3. (i) Let S ∈ Cu∼. We denote by S c := {s ∈ S | s ≪ s}. Observe that S c ∈ PoM∼.
(ii) Let f : S −→ T be a Cu∼-morphism between S ,T ∈ Cu∼. Observe that f (S c) ⊂ Tc. Thus,
we define a PoM∼-morphism fc := f|S c : S c −→ Tc.
Finally we define the following functor:

νc : Cu∼ −→ PoM∼

S 7−→ S c

f 7−→ fc

Proof. Since any Cu∼-morphism sends compact elements to compact elements, and since any
Cu∼-morphism is in particular a PoM∼-morphism, the result follows. □

Proposition 2.4.4. Let M ∈ PoM∼. Then (M,≤) ∈ W∼. We denote Cu∼(M) := γ∼(M,≤)
the Cu∼-completion of (M,≤) (see Proposition 2.3.4). Any PoM∼-morphism f : M −→ N
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between M,N ∈ PoM∼ induces a Cu∼-morphism γ∼( f ) : γ∼(M) −→ γ∼(N). Thus we obtain a
functor:

Cu∼ : PoM∼ −→ Cu∼

M 7−→ Cu∼(M)
f 7−→ γ∼( f )

Proof. Observe that in the case where the auxiliary relation is the same as the order, the
completion process corresponds to ‘adding’ suprema of ≤-increasing sequences. Further, the
induced morphism of f naturally sends suprema of ≤-increasing sequences of Cu∼(M) to the
ones in Cu∼(N). See [4, §5.5.3] □

Definition 2.4.5. Let S ∈ Cu∼. We say that S is an algebraic Cu∼-semigroup if every element
in S is the supremum of an increasing sequence of compact elements, that is, an increasing
sequence in S c. We denote by Cu∼alg the full subcategory of Cu∼ consisting of algebraic Cu∼-
semigroups (see [4, §5.5]).

Proposition 2.4.6. (cf [4, Proposition 5.5.4])
(i) For any algebraic Cu∼-semigroup S , we have Cu∼(S c) ≃ S .
(ii) Cu∼(M) is an algebraic Cu∼-semigroup for any M ∈ PoM∼.

Lemma 2.4.7. [21, Corollary 5] Whenever A has real rank zero, Cu(A) is an algebraic Cu-
semigroup. If moreover A has stable rank one, then the converse is true.

Corollary 2.4.8. Let A ∈ C∗. Then A has real rank zero if and only if Cu1(A) ∈ Cu∼alg.

Proof. Using the characterization of compacts elements of Cu1(A) by compact elements of
Cu(A) as in Corollary 2.1.15, we get that Cu(A) is algebraic if and only if Cu1(A) is algebraic.

□

Remark 2.4.9. We end this section by observing that ν+ and νc satisfy the following: ν+ ◦νc ≃

νc ◦ ν+. Hence, we sometimes consider ν+,c : Cu∼ −→ PoM as the composition of ν+ and νc.
Naturally, for any S ∈ Cu∼, we denote by S +,c := ν+,c(S ) the positively ordered monoid of
positive compact elements of S .
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Chapter 3

The structure of the Cu1-semigroup

The aim of this chapter is to study the ideal structure of Cu∼-semigroups. The first section
gives a new picture of the structure of the Cu1-semigroup using the complete lattice of ideals
of the C∗-algebra. In the second section, we define abstractly ideals in the category Cu∼ and
describe their properties. The last section is focused on the notion of quotient-ideals and short
exact sequences in the category Cu∼, to then apply all of the above to the Cu1-semigroup.
As before, we shall assume that A is a separable C∗-algebra with has stable rank one. We recall
that in order to ease the notations, we use C∗ to denote the category of separable C∗-algebras
of stable rank one.

3.1 Structure of the Cu1-semigroup

3.1.1. The aim of this section is to use the ideal structure of the algebra. Notice that, unless
specified, we only deal with closed two-sided ideals. We will show that the ideals of A can
be useful to understand in a different way the Cu1-semigroup of a C∗-algebra and morphisms
between Cu1-semigroups of C∗-algebras.

3.1.2. Let A ∈ C∗. Let a be a positive element in A. We will explicitly recall that her a and Ia

are stably isomorphic and use those isomorphisms to rewrite Cu1(A) in terms of ideals of A.
First, we recall some results that can be found in [11], [13].

Theorem 3.1.3. [11, Theorem 2.8] Let A ∈ C∗ and let B be a full hereditary subalgebra of A.
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Then there exists a partial isometry v inM(C ⊗ K), where C :=
(

B B.A
A.B A

)
, such that

B ⊗ K ≃ A ⊗ K
d 7−→ v∗dv

Corollary 3.1.4. Let A ∈ C∗ and let B be a full hereditary subalgebra of A. Then the canonical
inclusion i : B ↪−→ A induces a ∗-isomorphism i ⊗ 1M(K) : B ⊗ K ≃ A ⊗ K .

Proof. We have (i ⊗ 1M(K))(B ⊗ K) ≃ (B ⊗ K) which, by Theorem 3.1.3, is isomorphic to
A⊗K . More generally, one can check that an injective ∗-homomorphism between isomorphic
C∗-algebras is in fact an isomorphism. □

3.1.5. Let A ∈ C∗ and let a ∈ (A ⊗ K)+. Recall that we write Ia := AaA the ideal generated
by a and her a := aAa the hereditary subalgebra generated by a. Then a is obviously a full
element in Ia and her a is a full hereditary subalgebra of Ia. Since A is separable, then so is
Ia. Thus we can find a strictly positive element of Ia, that we write sa. In fact, one can take

sa :=
∞∑

n=1
a1/n/2n.

Since a ∈ her sa, we know that a ≲Cu sa. Observe that the canonical inclusion i : her a ↪−→

her sa = Ia is one of our standard morphisms (see Remark 2.1.5). That is, in the notation
of Remark 2.1.5, χasa = K1(i). Furthermore, by Corollary 3.1.4, we know that i ⊗ 1M(K) :
her a ⊗ K ≃ her sa ⊗ K is a ∗-isomorphism. Hence, by functoriality of K1, we get that
χasa : K1(her a) ≃ K1(Ia) is an abelian group isomorphism. Notice that for any unitary ele-
ment u of her a∼, we have χasa([u]K1(her a)) = [u]K1(Ia).

Lemma 3.1.6. Let A ∈ C∗ and let a, b ∈ (A ⊗ K)+ be such that a ≲Cu b. Let sa, sb be strictly
positive elements of the ideals Ia, Ib respectively. Then the following diagram is commutative:

U(her a∼) //

θ∼ab
��

K1(her a)
χab

��

≃

χasa
// K1(Ia)

χsa sb
��

U(her b∼) // K1(her b)
≃

χbsb // K1(Ib)

In particular, for any other strictly positive element sa′ of Ia, we have her sa = her sa′ and
hence χsa sa′ = idK1(Ia), which finally gives us χasa = χasa′ .

Proof. By definition, χab := K1(θ∼ab) and hence the left-square is commutative. Furthermore,
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by transitivity of ≲1 (see Lemma 2.1.4), we know that χsa sb ◦ χasa = χasb = χbsb ◦ χab. That is,
the right square is commutative, which ends the proof. □

Definition 3.1.7. Let A ∈ C∗. Let a ∈ (A ⊗ K)+ and let sA be any strictly positive element of
Ia. Define δa := χasa . By Lemma 3.1.6, this does not depend on the strictly positive element
sa chosen. Moreover, δa : K1(her a) ≃ K1(Ia) is a well-defined group isomorphism.
Now, without loss of generality, suppose that A is stable. Let I, J ∈ Lat(A) be ideals of A
and let sI , sJ be any strictly positive elements of I, J respectively. Suppose that I ⊆ J or,
equivalently [sI] ≤ [sJ] in Cu(A). Define δIJ := χsI sJ , which is also a well-defined group
morphism (that is, it does not depend on the strictly positive elements chosen). In fact, from
what we proved in Lemma 3.1.6, we have δIJ = K1(i), where i : I ↪−→ J is the canonical
inclusion. Thus, δII = idK1(I).

Corollary 3.1.8. Let A ∈ C∗ and let a, b ∈ (A ⊗ K)+ such that [a] ≤ [b] in Cu(A). Let u, v be
unitary elements of her a∼, her b∼ respectively. We write [u] := [u]K1(her a) and [v] := [v]K1(her b).
Then the following are equivalent:
(i) θ∼ab(u) ∼h v in her b∼.
(ii) χab([u]) = [v] in K1(her b).
(iii) δIaIb(δa([u])) = δb([v]) in K1(Ib), that is, δIaIb([u]K1(Ia)) = [v]K1(Ib).

Proof. Since K1(θ∼ab) = χab, we trivially obtain (i) is equivalent to (ii).
Furthermore, by the right-square of the commutative diagram in Lemma 3.1.6, we know that
δIaIb ◦ δa([u]) = δb ◦ χab([u]). And since δb is an isomorphism, we obtain that (ii) is equivalent
to (iii). □

3.1.9. From Corollary 3.1.8, we conclude that whenever [a] ≤ [b] in Cu(A), the group mor-
phism δIaIb defined in Definition 3.1.7 can replace K1 of the standard morphism. That is, for
any unitary elements u, v in her a∼, her b∼ respectively, we have [(a, u)] ≤ [(b, v)] in Cu1(A) if
and only if [a] ≤ [b] in Cu(A) and δIaIb([u]K1(Ia)) = [v]K1(Ib) in K1(Ib).

Definition 3.1.10. Let A ∈ C∗ and let I ∈ Lat(A) be an ideal of A. We recall that Cu(I) is an
ideal of Cu(A). We also recall that for x ∈ Cu(A), we write Ix := {y ∈ Cu(A) such that y ≤ ∞.x}
the ideal of Cu(A) generated by x.
Define Cu f (I) := {[a] ∈ Cu(A) | Ia = I}. Equivalently, Cu f (I) := {x ∈ Cu(A) | Ix = Cu(I)}. In
other words, Cu f (I) consists of the elements of Cu(A) that are full in Cu(I).

Remark 3.1.11. By Paragraph 1.3.10, we know that Lat(A) ≃ Lat(Cu(A)) by sending any
I ∈ Lat(A) to Cu(I). Furthermore, A is separable, hence we know that any ideal I ∈ Lat(A)
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and its image Cu(I) ∈ Lat(Cu(A)) are singly-generated by a full element. In fact, a is a full
element in I, (that is, Ia = I) if and only if [a] is a full element in Cu(I). And in this case, we
have Cu(Ia) = I[a].
Hence, for notational purposes, we will indistinguishably use Ia or I[a], referring to one or the
other. For instance, we might consider objects such as δIxIy or K1(Ix), where x, y ∈ Cu(A), when
we really mean δIaIb or K1(Ia), where a, b ∈ (A ⊗ K)+ are representatives of x, y respectively.

Proposition 3.1.12. Let A ∈ C∗. Then:
(i) For every x in Cu(A) and k ∈ N, Ik.x = Ix.
(ii) For every x ≤ y in Cu(A), we have the following: Ix+y = Iy, that is a priori different from
Ix.
(iii) Whenever x is not comparable with y in Cu(A), then either Ix = Iy = Ix+y or else Ix+y, Iy

and Ix need not be the same. In this case, for every t ≥ z := x + y, the following diagram is
commutative:

K1(Ix)
δIx Iz

%%

δIx It

$$
K1(Ix+y)

δIz It // K1(It)

K1(Iy)
δIy Iz

99

δIy It

::

Proof. (i) By definition of Ix, this is trivial since k(∞.x) = ∞.x.
(ii) If x ≤ y then x ∈ Iy, hence I(x+y) = Iy.
(iii) If Ix = Iy then I(x+y) = Iy. Else, the result follows from transitivity of ≲1 (see Lemma 2.1.4).

□

3.1.13. We will now use all the above to get a new picture of the Cu1-semigroup and its
elements. Let us first state this lemma:

Lemma 3.1.14. Let S be a Cu∼-semigroup and let T be a PoM∼. Let f : S −→ T be a PoM∼-
isomorphism. Then, T is a Cu∼-semigroup and f is a Cu∼-isomorphism. A fortiori, S ≃ T as
Cu∼-semigroups.

Proof. Let (tk)k be an increasing sequence in T . Since f is a surjective order-embedding, we
can find an increasing sequence (sk)k in S such that f (sk) = tk for all k. We easily deduce
that f (sup

k
sk) ≥ tk for any k ∈ N. Now, if t ≥ tk for all k ∈ N, then since there exists s ∈ S

such that f (s) = t and f is an order-embedding, we have that s ≥ sk for any k and thus
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t = f (s) ≥ f (sup
k

sk). Thus T satisfies (O1) and moreover f preserves suprema of increasing
sequences.
Now let x, y ∈ S be such that x ≪ y. Let (tk)k be an increasing sequence in T such that
f (y) ≤ sup

k
tk. Since f is a surjective order-embedding, we know that there exists an increasing

sequence (sk)k in S such that f (sk) = tk for any k ∈ N. Let s := sup
k

sk. Since s ≥ sk for any

k, then f (s) ≥ f (sk) = tk and passing to suprema, we deduce that f (s) ≥ f (y). Again, f is
an order-embedding, so we deduce that s ≥ y in S . Now, since x ≪ y, there exists n ∈ N
such that x ≤ sn, which implies f (x) ≤ f (sn) = tn. We conclude that f (x) ≪ f (y). From this,
(O2) follows easily and hence f preserves the compact-containment relation. Axioms (O3)
and (O4) are routine as well as the final conclusion. □

Definition 3.1.15. Let A ∈ C∗. Let us consider S :=
⊔

I∈Lat(A)
Cu f (I) × K1(I). We equip S with

addition and order as follows: Let (x, k) ∈ Cu f (Ix) × K1(Ix) and (y, l) ∈ Cu f (Iy) × K1(Iy), (see
Remark 3.1.11). Write z := x + y. Now define (x, k) + (y, l) := (z, δIxIz(k) + δIyIz(l)). Also, we
write (x, k) ≤ (y, l) if: x ≤ y in Cu(A) and δIxIy(k) = l.

Proposition 3.1.16. Let A ∈ C∗ and let (S ,+,≤) be the object defined in Definition 3.1.15.
Then:
(i) (S ,+,≤) is a Cu∼-semigroup.
(ii) The following map is a Cu∼-isomorphism:

ξ : Cu1(A) −→ S
[(a, u)] 7−→ ([a], δa([u]))

where [a] := [a]Cu(A) and [u] := [u]K1(her a).
Thus, whenever convenient, and many times in the future, we will describe elements of Cu1(A)
as a couple (x, k) where x ∈ Cu(A) and k ∈ K1(Ix); see Remark 3.1.11.

Proof. By Definition 3.1.7 and Definition 3.1.10, the map Cu1(A) −→
⊔

I∈Lat(A)
Cu f (I) × K1(I)

is well-defined. Further, by Proposition 3.1.12 addition and order are well-defined in S . Now
let a ∈ (A⊗K)+. Since A has stable rank one, then so has her a. Hence, by Proposition 1.1.17,
we know that any element of K1(her a) lifts to a unitary in her a∼ and that any two of those
lifts are homotopic. Also δa is an isomorphism and obviously any two representatives of x in
(A ⊗K)+ are Cuntz equivalent. Thus for any (x, k) ∈ Cu(A) ×K1(Ix), there exist a ∈ (A ⊗K)+
and u ∈ U(her a∼) such that [a] = x and δa[u] = k. Moreover for any other lift (a′, u′), by
construction, gives us [(a′, u′)] = [(a, u)]. So we conclude that ξ is a set bijection.
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Now, using Corollary 3.1.8 and Paragraph 3.1.9, we know that [(a, u)] ≤ [(b, v)] if and only
if ξ([(a, u)]) ≤ ξ([(b, v)]). Moreover, using Lemma 3.1.6, we have ξ([(a, u)] + [(b, v)]) =
ξ([(a, u)]) + ξ([(b, v)]). In the end, we have ξ is a PoM∼-isomorphism. We finally conclude
that S is a Cu∼-semigroup and that ξ is a Cu∼-isomorphism using Lemma 3.1.14. □

Remark 3.1.17. In this new picture, the positive elements of Cu1(A) can be identified with
{(x, 0), x ∈ Cu(A)} (see Lemma 2.1.21). In other words, Cu1(A)+ ≃ Cu(A) as Cu-semigroups.

3.1.18. We will end this section by describing morphisms from Cu1(A) to Cu1(B) in this new
viewpoint of our invariant.

Lemma 3.1.19. Let A, B ∈ C∗. Let I be an ideal of A and let ϕ : A −→ B be a ∗-
homomorphism. Write J := Bϕ(I)B the smallest ideal of B containing ϕ(I). Also write
α := Cu1(ϕ) and α0 := Cu(ϕ).
(i) For any x ∈ Cu f (I), we have α0(x) ∈ Cu f (J). That is, Iα0(x) = Cu(J) is the smallest ideal of
Cu(B) containing α0(Cu(I)).
(ii) Let ξA : Cu1(A)

≃
−→

⊔
I∈Lat(A)

Cu f (I) × K1(I) be the Cu∼-isomorphism in Proposition 3.1.16

(respectively ξB for B). For any I ∈ Lat(A), we define αI := K1(ϕ|I), where ϕ|I : I
ϕ
−→ J. Then

for any (x, k) with x ∈ Cu f (I) and k ∈ K1(I) (see Proposition 3.1.16), we have α(ξ−1(x, k)) =
(α0(x), αI(k)).
Thus, we may abuse the language and describe morphisms α := Cu1(ϕ) from Cu1(A) to
Cu1(B), whenever convenient, as couples α := (α0, {αI}I∈Lat(A)), where α0 := Cu(ϕ) and
αI := K1(ϕ|I).

Proof. By functoriality of Cu and Paragraph 1.3.10, we know that Cu(J) is the smallest ideal
of Cu(B) that contains α0(Cu(I)). Now let x ∈ Cu f (I). Then α0(x) ∈ α0(Cu(I)). Hence
Iα0(x) ⊆ Cu(J). However, since x is full in Cu(I), we have α0(Cu(I)) ⊆ Iα0(x). By minimality of
Cu(J) we deduce that Iα0(x) = Cu(J), that is, α0(x) ∈ Cu f (J), which proves (i).
(ii) Let (x, k) be an element of Cu1(A), where x ∈ Cu(A) and k ∈ K1(Ix). Let (a, u) be a
representative of (x, k), that is, ξ([(a, u)]) = (x, k) as in Proposition 3.1.16. That is, [a] = x in
Cu(A) and δa([u]K1(her a)) = [u]K1(Ia) = k. We know that

α(ξ−1(x, k)) = α([a, u])

= [(ϕ(a)), ϕ∼(u))]

= ([ϕ(a)]Cu(B), δϕ(a)([ϕ∼(u)]K1(her ϕ(a)∼)))

= ([ϕ(a)]Cu(B), [ϕ∼(u)]K1(I∼
ϕ(a)))
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Hence α(ξ−1(x, k)) = (α0(x), αI(k)) as desired. □

3.2 Ideal structure in Cu∼

3.2.1. In this section, we define ideals in the category Cu∼. The idea is to work with semi-
groups that are countably-based, using the same definition as for Cu-semigroups. That is, we
say that a Cu∼-semigroup S is countably-based if there exists a countable subset B ⊆ S such
that for any pair a′ ≪ a, there exists b ∈ B such that a′ ≤ b ≪ a. We will also use concepts
from Domain Theory (see [32], [44]).

Definition 3.2.2. [32, Definition II.1.3] Let S be a Cu∼-semigroup. A subset O ⊆ S is called
Scott-open if:
(i) O is an upper set, that is, for any y ∈ S , y ≥ x ∈ O implies y ∈ O.
(ii) For any x ∈ O, there exists x′ ≪ x such that x′ ∈ O. Equivalently, for any increasing
sequence of S whose supremum belongs to O, there exists an element of the sequence also in
O.
Dually we say that F ⊆ S is Scott-closed if S \ F is Scott-open, that is, if it is a lower set and
closed under suprema of increasing sequences.

Remark 3.2.3. Let us check the equivalence in (ii) in the above definition: Let O be an upper
set of S and let x ∈ O. Suppose there exists x′ ≪ x such that x′ ∈ O. Let (xn)n be any
increasing sequence whose supremum is x. By definition of≪, there exists xn ≥ x′, hence xn

is also in O.
Conversely, using (O2), there exists a≪-increasing sequence (xn)n whose supremum is x. By
hypothesis, there exists n such that xn ∈ O, and by construction xn ≪ x. This finishes the
proof.

Definition 3.2.4. Let S be a Cu∼-semigroup. We define the following axioms:
(PD): We say that S is positively directed if, for any x ∈ S , there exists px ∈ S such that
x + px ≥ 0.
(PC): We say that S is positively convex if, for any x, y ∈ S such that y ≥ 0 and x ≤ y, we have
x + y ≥ 0.

Lemma 3.2.5. Let A ∈ C∗. Then Cu1(A) is positively directed and positively convex.

Proof. Let A ∈ C∗. Using the picture of Proposition 3.1.16 consider (x, k) ∈ Cu1(A), where
x ∈ Cu(A) and k ∈ K1(Ix), we deduce that (x, k) + (x,−k) = (2x, 0) ≥ 0, and so Cu1(A) is
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positively directed. Now let (y, 0) be a positive element in Cu1(A) such that (x, k) ≤ (y, 0).
Since (x, k) ≤ (y, 0), we know that δIxIy(k) = 0. Therefore, δIxIx+y(k) = 0, and we deduce that
(x, k) + (y, 0) = (x + y, 0) is a positive element in Cu1(A), which finishes the proof. □

Remark 3.2.6. If S is positively convex, then the only negative element of S is 0.

Definition 3.2.7. Let S be a Cu∼-semigroup. We define S max := {x ∈ S | if y ≥ x, then y = x}.
This subset can be interpreted as the set of maximal elements of S .

Proposition 3.2.8. Let S be a countably-based positively directed Cu∼-semigroup. Then S max

is not empty and is an abelian group with neutral element eS max := y + py, where y is any
element of S max and py any element of S such that y + py ≥ 0. In fact, the inverse of y is
2py + y.

Proof. By assumption, for any x ∈ S , there exists at least one element px ∈ S , such that
x + px ≥ 0. We will first show that S max is closed under addition.
Let y, z be elements in S max and let x ∈ S be such that x ≥ y+z. We first have x+pz ≥ y+z+pz ≥

y and x + py ≥ z + y + py ≥ z, which gives us the following equalities: x + pz = y + z + pz = y
and x + py = z + y + py = z. Obviously x ≤ x + pz + z = x + pz + x + py = y + z and since
x ≥ y + z, we have x = y + z which tells us that S max is closed under addition.
Now, let us show the following: for any z ∈ S max and any pz ∈ S such that z+ pz ≥ 0, we have
z+ pz ∈ S max. Let x ∈ S be such that x ≥ z+ pz. We know that for any y ∈ S max, y+ z+ pz = y.
In particular, 2z + pz = z. Also, x + z ≥ 2z + pz = z. Hence x + z = z. Finally compute that
x ≤ x + z + pz = z + pz. Therefore x = z + pz, that is, z + pz ∈ S max.
Next for any y, z elements of S max, we have y + py + z + pz ≥ z + pz, y + py, which by what
we have just proved gives us y + py = y + py + z + pz = z + pz. Hence, the positive element
eS max := y + py belongs to S max and is independent of y and py. If z ∈ S max, since eS max ≥ 0,
z + emax ≥ z and we obtain z + eS max = z. Thus we have that S max is an abelian monoid with
well-defined neutral element eS max .
We already know that z+ (2pz+ z) = eS max for any z ∈ S max. Let us show that 2pz+ z belongs to
S max for any z ∈ S max and any pz ∈ S . Let x ≥ 2pz + z. Then x+ z ≥ eS max , hence x+ z = eS max .
On the other hand, x ≤ x + z + pz = eS max + pz = 2pz + z. Therefore 2pz + z belongs to S max

and is the (unique) inverse of z, which finishes the proof that S max is an abelian group.
Lastly, observe that ν+(S ) (see Lemma 2.1.21) is a countably-based Cu-semigroup. Therefore
it has a maximal element which ensure us the existence of a maximal positive element in S
and a fortiori that S max is a non-empty abelian group. □
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Remark 3.2.9. In the context of Proposition 3.2.8, eS max is the only positive element of S max,
and the only positive maximal element of S . We will see later that whenever A is separable,
Cu1(A)max ≃ K1(A) with neutral element (∞Cu(A), 0K1(A)).

Lemma 3.2.10. Let S be a countably-based Cu∼-semigroup. Then the following are equiva-
lent:
(i) S is positively directed.
(ii) For any x ∈ S , there exists a unique px ∈ S max such that x + px ≥ 0.
(iii) S max is an absorbing abelian group in S whose neutral element eS max is positive.

Proof. (ii) implies (i) is clear.
Let us show that (i) implies (iii): We know from Proposition 3.2.8 that S max is an abelian
group whose neutral element is eS max ≥ 0. Let x ∈ S and let p ∈ S max, we know there exists
y ∈ S such that x + y ≥ 0. Hence x + y + p ≥ p. Let z ∈ S be such that z ≥ x + p. we have
z+y ≥ x+y+ p = p and hence z+y = p. Now since x+y ≥ 0, we have z ≥ x+ p = x+z+y ≥ z
which gives us z = x + p, that is, x + p ∈ S max for any x ∈ S and p ∈ S max. This shows that
S max is an absorbing abelian group in S .
Let us show now that (iii) implies (ii): Let x ∈ S and write e := eS max . Let q := x + e. Note
that q belongs to S max by (iii). Denote by px the inverse of q in S max. we have x + e + px = e,
and x + px ∈ S max by assumption. Therefore x + px + e = x + px = e ≥ 0. Now suppose there
exists another r ∈ S max such that r + x ≥ 0. Then r + x + px = px. However x + px = e, hence
r = px, which ends the proof. □

Remark 3.2.11. One can notice all the proofs above hold in a positively directed and posi-
tively convex partially ordered monoid S , but one cannot know for sure that S max is not empty.
Indeed, it suffices to assume axiom (O1) together with the countably-based property to ensure
that S max contains at least one element (the maximal positive element of S ).
In fact, for a Cu-semigroup S , we have that S max is either empty, or the trivial group consisting
of the largest element of S .

Definition 3.2.12. Let S be a positively directed Cu∼-semigroup and let x ∈ S . We define
Px := {y ∈ S , x + y ≥ 0}.

Remark 3.2.13. It is easy clear that Px , ∅. In fact, Px (and also x + Px) is a Scott-open set
in S . In particular, S + = P0 is Scott-open in S .
Also, if x ∈ S , then Px is obviously an upper set. Let y ∈ Px. Using that 0 ≪ 0 and (O2), we
can construct a≪-increasing sequence towards y, and we have by construction some yn ≪ y
such that x + yn ≥ 0.
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Definition 3.2.14. Let S be countably-based positively directed Cu∼-semigroup. Let M be a
subset of S . We say M is positively stable if M satisfies axiom (PD) and moreover, for any
x ∈ S , (x + Px)

⋂
M , ∅ implies that x ∈ M.

Definition 3.2.15. Let S be countably-based positively directed and positively convex Cu∼-
semigroup. We say that I ⊆ S is an order-ideal (or ideal) of S if I is a Scott-closed, positively
stable submonoid of S .
In this case, I is also a countably-based positively directed and positively convex Cu∼-semi-
group, and it order-embeds canonically into S (that is, the inclusion map is Scott-continuous).
The set of ideals of S will be denoted Lat(S ).
Lastly, we say that an ideal I of S is simple if it only contains the trivial ideal {0} and I.

3.2.16. We naturally want to define the ideal generated by an element. However, we cannot
ensure that the intersection of ideals is still an ideal. In fact, being positively directed is not
preserved under intersection, so we will define the ideal generated by an element abstractly as
follows:

Definition 3.2.17. Given x ∈ S , we define Idl(x) as the smallest ideal of S containing x, that
is, x ∈ Idl(x) and for any J ideal of S containing x we have J ⊇ Idl(x). Note that this ideal
might not exist.

3.2.18. Here we offer an example of two ideals of a countably-based positively directed and
positively convex Cu∼-semigroup, whose intersection fails to be positively directed, and hence
fails to be an ideal:
Let S be the subset of N

3
× Z defined as follows:

S := {((n1, n2, n3), k) ∈ N
3
× Z | k ≥ 0, if n1 = n3 = 0, and k = 0, if n1 = n2 = n3 = 0}.

We put on this set a component-wise sum and we define for any two pairs: (g, k) ≤ (h, l) if
g ≤ h in N

3
and k = l in Z. Notice that S + = N

3
× {0}. One can check that (S ,+,≤) is a

countably-based positively directed and positively convex Cu∼-semigroup.
Now consider I1 := ((N×N×{0})×Z)∩S and I2 := (({0}×N×N)×Z)∩S . Again, one can check
that those are ideals of S as defined earlier. However, I1 ∩ I2 = (({0} × N∗ × {0}) × Z+) ⊔ {0S }

is not positively directed. Indeed, let x := ((0, n, 0), 1) ∈ I1 ∩ I2. Observe that any element
y ∈ I1 ∩ I2 is of the form ((0, n, 0), k) for some n ∈ N and k ≥ 0. Thus, there is no y ∈ I1 ∩ I2

such that x + y ≥ 0 and hence I1 ∩ I2 is not positively directed.
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Proposition 3.2.19. Let S be countably-based positively directed and positively convex Cu∼-
semigroup. Let x be a positive element of S . Define Ix := {y ∈ S | there is y′ ∈ S with 0 ≤
y + y′ ≤ ∞.x}. Then Ix = Idl(x).

Proof. First, we show that Ix is a submonoid of S that contains x. Using (O1), we know that
∞.x := sup

n∈N
n.x is a positive element. Moreover 0 ≤ 0 + 0 ≤ ∞.x, hence 0 ∈ Ix. We also know

that for any n,m in N, 0 ≤ n.x + m.x ≤ ∞.x. So we get that {n.x}n∈N ⊆ Ix. Let y1, y2 in Ix.
Then one easily checks that 0 ≤ (y1+ y2)+ (y′1+ y′2) ≤ 2.(∞.x) = ∞.x, hence Ix is closed under
addition. This proves it is a submonoid of S that contains x.
Furthermore, we claim that ∞.x is the maximal positive element of Ix: let y ∈ Ix such that
y ≥ 0. There exists y′ ∈ Ix such that 0 ≤ y + y′ ≤ ∞.x. Since y ≥ 0, we get that
y′ ≤ y + y′ ≤ ∞.x. So, by axiom (PC) we deduce that 0 ≤ y′ + ∞.x. Now we add y on
both sides to get that y ≤ y + y′ +∞.x ≤ 2.(∞.x) = ∞.x, which proves the claim.

We will now prove that Ix is closed under suprema of increasing sequences. Let (yn)n be
an increasing sequence in Ix. Let y′0 be such that 0 ≤ y0 + y′0 ≤ ∞.x, where y0 is the first term
of (yn)n. Observe that y′0 belongs to Ix. Since Ix is closed under addition, for any n ∈ N, we
have yn + y′0 ∈ Ix. Therefore we can choose zn ∈ Ix such that (0 ≤) yn + y′0 + zn ≤ ∞.x. Finally
choose z′n ∈ Ix such that 0 ≤ zn + z′n ≤ ∞.x.
Thus, we have on the one hand that 0 ≤ yn + y′0 ≤ (yn + y′0) + (zn + z′n) and on the other
hand that (yn + y′0 + zn) + z′n ≤ ∞.x + z′n for any n ∈ N. Now since Ix is submonoid of S
that contains x and z′n ∈ Ix, we get that ∞.x + z′n is a positive element of Ix. Now since
∞.x = 2.(∞.x), we have (∞.x + z′n) = 2.(∞.x) + z′n ≥ ∞.x. By maximality of∞.x in Ix, we get
that 0 ≤ yn + y′0 ≤ ∞.x, for any n ∈ N. Using Cuntz axioms (O3)-(O4), we pass to suprema
and we obtain 0 ≤ y + y′0 ≤ ∞.x, that is, y ∈ Ix. So Ix is closed under suprema of increasing
sequences.

We also know that Ix is positively directed. Thus, by Proposition 3.2.8, we know that (Ix)max is
a (non empty) abelian group. Indeed, it contains at least∞.x, its neutral element, which again
is the unique maximal positive element of Ix.
Let us show that Ix is positively stable. Take any z ∈ S such that there exists z′ with 0 ≤ z + z′

and (z + z′) ∈ Ix. We know there is a y ∈ Ix such that 0 ≤ z + z′ + y ≤ ∞.x. Hence z ∈ Ix.

Next, we have to show that Ix is a lower set. Let z ≤ y with y ∈ Ix. We know that there
exists y′ ∈ Ix such that 0 ≤ y + y′ ≤ ∞.x. Since z + y′ ≤ y + y′, we deduce by axiom (PC) that
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0 ≤ z+ y′ + y+ y′ ≤ 2(y+ y′) ≤ ∞.x. Therefore z ∈ Ix, that is, Ix is a lower set, which ends the
proof that Ix is an ideal of S containing x.

Lastly, let J be an ideal of S containing x. Then it contains ∞.x = e(Ix)max . Thus if y ∈ Ix,
we know that there exists y′ ∈ Ix such that 0 ≤ y+ y′ ≤ ∞.x, and therefore y+ y′ ∈ (y+Py)∩ J.
Since J is positively stable, this implies that y ∈ J. We obtain J ⊇ Ix, which gives us that Ix is
the ideal generated by x. □

Corollary 3.2.20. Let S be countably-based positively directed and positively convex Cu∼-
semigroup, and let I be an ideal of S . Then I is singly-generated. In fact, I = IeImax

.

Proof. For any x ∈ I, there exists by Proposition 3.2.8 a unique px ∈ I such that x+ px = eImax .
Since IeImax

is positively stable, we have x ∈ IeImax
. Conversely, if x ∈ IeImax

, then there exists
x′ ∈ IeImax

such that 0 ≤ x + x′ ≤ eImax . Since I is positively stable, we obtain x ∈ I, which ends
the proof. □

Corollary 3.2.21. Let S be countably-based positively directed and positively convex Cu∼-
semigroup, and let I, J be two ideals of S . Then eImax ≤ eJmax if and only if I ⊆ J.

Proof. Suppose eImax ≤ eJmax . We easily see that IeImax
⊆ JeJmax

. By Corollary 3.2.20, we obtain
I ⊆ J. The converse is trivial by maximality of eJmax . □

Theorem 3.2.22. Let S be countably-based positively directed and positively convex Cu∼-
semigroup. Let us consider the following map:

Φ : Lat(S ) −→ Lat(ν+(S ))
I 7−→ ν+(I)

Then it is a well-defined ordered set isomorphism and the inverse map is defined as follows:
For any Cu-ideal J of ν+(S ), Φ−1(J) := IeJmax

.

Proof. We know that ν+(S ) is a countably-based Cu-semigroup, hence for any ideal J ∈
Lat(ν+(S )), we have Jmax = {eJmax}. In fact, J is generated (as Cu ideal) by its maximal el-
ement eJmax , that is, J = {x ∈ ν+(S ) | x ≤ eJmax}. Now since eν+(I)max = eImax , we deduce by
Corollary 3.2.21 that Φ and Φ−1 are well-defined ordered set maps that are inverses of one
another. □

Corollary 3.2.23. Let S be countably-based positively directed and positively convex Cu∼-
semigroup. Then:
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(i) Lat(S ) is a complete lattice, with the structure inherited from Φ−1 of Theorem 3.2.22.
(ii) For any A ∈ C∗, we have Lat(A) ≃ Lat(Cu1(A)) as complete lattices.
(iii) For any A ∈ C∗ and any I ∈ Lat(A), we have Cu1(I) ∈ Lat(Cu1(A)). In fact, any ideal
J ∈ Lat(Cu1(A)) is of the form Cu1(I), for some I ∈ Lat(A), and Cu1(I) is simple if and only if
I is simple.

Proof. (i) From Paragraph 1.3.10, we know that Lat(ν+(S )) is a complete lattice, so the Set
isomorphism Φ−1 takes the lattice structure onto Lat(S ) to make it a complete lattice.
(ii)-(iii) Let A be a separable C∗-algebra. We also know that Lat(A) ≃ Lat(Cu(A)) by sending
any I ∈ Lat(A) to Cu(I). One can easily check that Φ−1(Cu(I)) ≃ Cu1(I), hence any (resp
simple) ideal of Cu1(A) is of the form Cu1(I) for some (resp simple) I ∈ Lat(A). □

Remark 3.2.24. Let us explicitly compute the lattice structure on Cu1(A) for any A ∈ C∗. Let
I, J ∈ Lat(A), then Cu1(I) ∧ Cu1(J) = Cu1(I ∩ J) and Cu1(I) ∨ Cu1(J) = Cu1(I + J).

Lemma 3.2.25. Let S ,T be countably-based positively directed and positively convex Cu∼-
semigroups. Let α : S −→ T be a Cu∼-morphism and let I, I′ be two ideals of S such that
I ⊆ I′. Then:
(i) J := Iα(eImax ) is the smallest ideal in Lat(T ) that contains α(I) and J′ := Iα(eI′max

) is the
smallest ideal in Lat(T ) that contains α(I′). Also, we have that J ⊂ J′.
(ii) Define α|I : I −→ J, the restriction of α that has codomain J, respectively α|I′ , I′, J′. Then
the following square is commutative:

I
α|I
��

i // I′

α|I′

��
J

i
// J′

where i stands for the canonical inclusions.

Proof. Since α is order-preserving, α|J and α|J′ are well-defined. Besides, we know that for
any y ∈ I, there exists y′, such that 0 ≤ y + y′ ≤ eImax , hence we have 0 ≤ α(y) + α(y′) ≤
∞.α(eImax). Therefore α(y) ∈ J and we obtain that α(I) ⊆ J, respectively α(I′) ⊆ J′. Now, by
Corollary 3.2.21, we have eImax ≤ eI′max and hence α(eImax) ≤ α(eI′max). Thus J ⊆ J′ and we see
the square is commutative. □

3.2.26. In the sequel, when we speak of the restriction of a Cu∼-morphism to an ideal, we
will always mean, unless stated otherwise, the map defined above. That is, we also restrict the
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codomain. Using notations of Lemma 3.2.25, notice that α|I(eImax) = eJmax .
As done with νc and ν+ in the previous chapter (see Lemma 2.1.21, Proposition 2.4.4), we
define a functor νmax in order to obtain the abelian group S max in a functorial way.

Proposition 3.2.27. Let α : S −→ T be a Cu∼-morphism between countably-based positively
directed and positively convex Cu∼-semigroups S ,T. Let αmax := α + eTmax . Then αmax is a
AbGp-morphism from S max to Tmax.
Thus we obtain a functor:

νmax : Cu∼ −→ AbGp
S 7−→ S max

α 7−→ αmax

Proof. Let us first show that αmax is a group morphism. For any s ∈ S max, we know that
(α(s) + eTmax) ∈ Tmax. Now, since α is a Cu∼-morphism, we have αmax(s1) + αmax(s2) =
α(s1) + α(s2) + 2eTmax = α(s1 + s2) + eTmax = αmax(s1 + s2), for any s1, s2 elements of S max.
Let us now show that νmax satisfies the functor properties. Trivially, νmax(id) = id. Let α :
S −→ T and β : T −→ R be two Cu∼-morphisms. Let s ∈ S max. Then:

βmax ◦ αmax(s) = β(α(s) + eTmax) + eRmax

= (β ◦ α)max(s)

Hence νmax(β ◦ α) = νmax(β) ◦ νmax(α). □

Definition 3.2.28. Let F,G : C −→ D be covariant functors. Recall that a natural transfor-
mation η : F ⇒ G is a collection of maps ηC : F(C) −→ G(C) defined in a natural way (that
is, defined in the same way for every object C) such that for any morphism h : C1 −→ C2 in
C, the following square is commutative inD:

F(C1)

F(h)
��

ηC1 // G(C1)

G(h)
��

F(C2) ηC2

// G(C2)

Moreover, if ηC is an isomorphism for some C (hence for any C ∈ C), we say that there exists
a natural isomorphism between F and G and we write F ≃ G.
Dually, one can define those notions for contravariant functors, by reversing the vertical arrows
in the square.

p. 72



3.2. Ideal structure in Cu∼

3.2.29. In the next theorem, we use the picture of the Cu1-semigroup described in Proposi-
tion 3.1.16.

Theorem 3.2.30. Let A ∈ C∗. Then we have the following natural isomorphisms in Cu and
AbGp respectively:

Cu1(A)+ ≃ Cu(A) Cu1(A)max ≃ K1(A)
(x, 0) 7−→ x (∞A, k) 7−→ k

In fact, we have the following natural isomorphisms between functors that are defined between
C∗ −→ Cu and C∗ −→ AbGp respectively:

ν+ ◦ Cu1 ≃ Cu νmax ◦ Cu1 ≃ K1

Proof. From the construction of the order in Cu1(A), we know that any positive element of
Cu1(A) is of the form (x, 0) for some x ∈ Cu(A). Set ∞A := [sA⊗K ] = sup

n∈N
n.[sA], the largest

element of Cu(A). We know that any maximal element of Cu1(A), that is, any element of
Cu1(A)max, is of the form (∞A, k) for some k ∈ K1(A). Hence we easily get the two canonical
isomorphisms of the statement.
Now consider a ∗-homomorphism ϕ : A −→ B. Let (x, 0) be a positive element of Cu1(A). By
Lemma 3.1.19 we have Cu1(ϕ)+(x, 0) = (Cu(ϕ)(x), 0). Let (∞A, k) be in Cu1(A)max. Again by
Lemma 3.1.19 we know that

Cu1(ϕ)max(∞A, k) = (Cu(ϕ)(∞A),Cu1(ϕ)A(k)) + (∞B, 0)

= (∞B, δIϕ(∞A)B ◦ Cu1(ϕ)A(k))

= (∞B,K1(ϕ)(k)).

This exactly gives us that

Cu1(A)+
Cu1(ϕ)+

��

≃ // Cu(A)

Cu(ϕ)
��

Cu1(A)max

Cu1(ϕ)max

��

≃ // K1(A)

K1(ϕ)
��

Cu1(B)+ ≃
// Cu(B) Cu1(B)max ≃

// K1(B)

are commutative squares. □

Corollary 3.2.31. Let A, B ∈ C∗. Let I ∈ Lat(A) be an ideal of A and let ϕ : A −→ B be a
∗-homomorphism. Write α := Cu1(ϕ) and J := Bϕ(I)B. Let us use the same notations as in
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Lemma 3.1.19, that is, α = (α0, {αI}I∈Lat(A)). Then:
(i) ν+(α|Cu1(I)) = α0 |Cu(I) and νmax(α|I) = αI .
(ii) Let I′ ∈ Lat(A) such that I′ ⊇ I. Then the following squares are commutative in their
respective categories:

Cu(I)
α0 |Cu(I)

��

i // Cu(I′)
α0 |Cu(I′)

��

K1(I)

αI

��

δII′ // K1(I′)
αI′

��
Cu(J)

i
// Cu(J′) K1(J)

δJJ′
// K1(J′)

where the maps i stand for the natural inclusions in Cu.
Observe that (ii) follows trivially from functoriality of Cu and K1, but we illustrate here how
it can also be derived from our methods.

Proof. (i) Using the isomorphisms of lattices of Theorem 3.2.22, we have Cu1(J) is the small-
est ideal of Cu1(B) that contains α(Cu1(I)). Hence, α|Cu1(I) defined in Lemma 3.2.25 has
codomain Cu1(J). Thus we deduce that ν+(α|Cu1(I)) = α0 |Cu1(I). Again, we write ∞J the maxi-
mal element of Cu(J). Now observe that νmax(α|I)(x, k) = (α0(x), αI(k))+(∞J, 0) = (∞J, αI(k)).
Thus (i) follows.
(ii) Apply ν+ and νmax to the square of Lemma 3.2.25, combined with the natural isomorphisms
of Theorem 3.2.30 and condition (i) above to get the result. □

3.3 Quotients in Cu∼ and exactness of the functor Cu1

Definition 3.3.1. Let S be countably-based positively directed and positively convex Cu∼-
semigroup. Let I be an ideal of S . We define the following preorder on S : x ≤I y if there
exists z ∈ I such that x ≤ z + y. By antisymmetrizing this preorder, we get an equivalence
relation on S , denoted ∼I . We denote by x := [x]∼I .

Lemma 3.3.2. Let S be countably-based positively directed and positively convex Cu∼-semi-
group. Let I be an ideal of S . We canonically define x + y := x + y and x ≤ y if x ≤I y. Now
define S/I := (S/∼I ,+,≤). Then S/I is a countably-based positively directed and positively
convex Cu∼-semigroup. Also, S −→ S/I is a surjective Cu∼-morphism.

Proof. Let x, y be in S . It is not hard to check that the sum and ordered considered are
well-defined, that is, they do not depend on the representative chosen. Let us show that S/I
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equipped with this sum and order is a PoM∼. Let x1, x2 and y1, y2 be elements in S such that
x1 ≤ x2 and y1 ≤ y2. There exist z1, z2 in I such that x1 + y1 ≤ x2 + z1 + y2 + z2, that is,
x1 + y1 ≤ x2 + y2. We have shown that (S/I,+,≤) is a PoM∼. Also notice that the quotient
map S −→ S/I is naturally a surjective PoM∼-morphism.
In order to show that (S/I,+,≤) satisfies the Cuntz axioms, and that S −→ S/I is a Cu∼-
morphism, we proceed in a similar way as in [4, Section 5.1] for quotients in the category Cu.
As the proof works exactly the same way here, we will not get into too many details. This is
based on the following two facts:
(1) For any x ≤ y in S/I there exist representatives x, y in S such that x ≤ y. Indeed we
know that there are representatives x, y1 in S and some z ∈ I such that x ≤ y1 + z. Since
y := (y1 + z) ∼I y1, the claim is proved.
(2) For any increasing sequence (xk)k in S/I, we can find an increasing sequence of represen-

tatives (xk)k in S . This uses (1) and the fact that I satisfies (O1). Then z := sup
n∈N

(
n∑

k=0
zk), where

zk are the elements obtained from (1), is an element of I. We refer the reader to [4, §5.1.2] for
more details.
Let x ∈ S/I and let x be a representative of x in S . We know there exists px in S such that
x + px ≥ 0. Since 0 ∈ I, we get that x + px ≥ 0, that is, S/I is positively directed.
Lastly, let x, y ∈ S/I such that x ≤ y and 0 ≤ y. Let x be a representative of x and y a rep-
resentative of y in S . Then there are elements z,w ∈ I such that x ≤ y + z and 0 ≤ y + w.
Since I is positively directed, there exists z′ ∈ I such that z + z′ ≥ 0. Now observe that
x + w + z′ ≤ y + z + w + z′ = (y + w) + (z + z′) with y + w + z + z′ ≥ 0. By assumption S is
positively convex, hence we have x+w+ z′ + y+w+ z+ z′ ≥ 0 and thus and in S/I we obtain
x + y ≥ 0, as desired. □

Remark 3.3.3. A priori (S/I,+,≤) is not positively ordered either. Indeed, one could take for
example an algebra that has a non-trivial ideal I with no K1-obstructions and such that K1(A)
is not trivial. Then Cu1(A)/Cu1(I) would not be positively ordered.

Lemma 3.3.4. Let S ,T be countably-based positively directed and positively convex Cu∼-
semigroups. Let I be an ideal of S . Let α : S −→ T be a Cu∼-morphism. Suppose that
α(z) = 0 for any z ∈ I. Then:
(i) α(x1) = α(x2) for any x1, x2 ∈ S such that x1 = x2 in S/I. We say that α is constant on the
classes of S/I.
(ii) There exists a unique Cu∼-morphism α : S/I −→ T such that the following diagram is
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commutative:
S

π   

α // T

S/I
α

>>

defined by α(x) := α(x), where x ∈ S is any representative of x.

Proof. By assumption α(I) = {0}.
(i) Let x1, x2 ∈ S such that x1 ∼I x2. Then we know that there exists z1, z2 ∈ I such that
x1 ≤ z1 + x2 and x2 ≤ z2 + x1. Since α(z1) = α(z2) = 0, we obtain that α(x1) = α(x2).
(ii) Hence we can define α : S/I −→ T by α(x) := α(x), for any x ∈ S . By construction, the
diagram is commutative. We only have to check that α is a Cu∼-morphism. Using facts (1)
and (2) of the proof Lemma 3.3.2, one can check that for any x, y ∈ S/I such that x ≤ y (resp
≪), there exists representatives x, y in S such that x ≤ y (resp≪). Thus we easily obtain that
α is a Cu∼-morphism, which ends the proof. □

3.3.5. In the next theorem, we use the picture of the Cu1-semigroup described in Proposi-
tion 3.1.16.

Theorem 3.3.6. Let A ∈ C∗ and let I ∈ Lat(A). Let π : A −→ A/I be the quotient map.
Write π∗ := Cu1(π) : Cu1(A) −→ Cu1(A/I). Then π∗((x, k)) ≤ π∗((y, l)) if and only if
(x, k) ≤Cu1(I) (y, l). Moreover π∗ is a surjective Cu∼-morphism. Thus, it induces a Cu∼-
isomorphism Cu1(A)/Cu1(I) ≃ Cu1(A/I).

Proof. Let us start with the surjectivity of π∗. Let [(aI , uI)] ∈ Cu1(A/I) where aI ∈ ((A/I)⊗K)+
and uI is a unitary element of (her aI)∼. As π is surjective, we know there exists a ∈ A⊗K+ such
that π(a) = aI . Moreover, her a has stable rank one, hence unitaries of (her aI)∼ = π∼(her a∼)
lift. Thus, we can find a unitary element u in her a∼ such that π∼(u) = uI . One can then check
that π∗([(a, u)]) = [(aI , uI)].
Let us show the first equivalence of the theorem. Noticing that π∗(Cu1(I)) = {0Cu1(A/I)} and
that π∗ is order-preserving, one easily gets the backward implication.
Now let (x, k) and (y, l) be elements of Cu1(A) such that π∗((x, k)) ≤ π∗((y, l)). We write
(x, k) := π∗((x, k)) = (π∗0(x), π∗x(k)) and (y, l) := π∗((y, l)) = (π∗0(y), π∗y(l)). Thus we have
x ≤ y in Cu(A/I). By Paragraph 1.3.11, we know that Cu(A/I) ≃ Cu(A)/Cu(I), where the
isomorphism is induced by the natural quotient map π : A −→ A/I. Therefore, there exists
z ∈ Cu(I), such that x ≤ y+ z in Cu(A). A fortiori, we choose z := ∞I and we write y′ := y+ z.
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Now by Corollary 3.2.31, we obtain the following exact commutative diagram:

K1(Ix)
δIx Iy′

��

π∗Ix // K1(Ix)
δIx Iy
��

// 0

K1(Iz) δIz Iy′

// K1(Iy′) π∗Iy′

// K1(Iy) // 0

Thus, we get on the one hand that K1(Iy′)/δIzIy′ (K1(Iz)) ≃ K1(Iy) and on the other hand
π∗Iy′
◦ δIxIy′ = δIxIy ◦ π

∗
Ix

. Moreover, by hypothesis, we have δIxIy(k) = l. So one finally gets
that δIxIy′ (k) = δIyIy′ (l) + δIzIy′ (l

′) for some l′ ∈ K1(Iz). That is, there exists (z, l′) ∈ Cu1(I) such
that (x, k) ≤ (y, l) + (z, l′). This ends the proof of the equivalence.
Finally, we already know that Cu1(I) is an ideal of Cu1(A) and that π∗ : Cu1(A) ↠ Cu1(A/I)
is constant on classes of Cu1(A)/Cu1(I). By Lemma 3.3.4, π∗ induces a surjective Cu∼-
morphism π∗ : Cu1(A)/Cu1(I) −→ Cu1(A/I). Furthermore, the equivalence that we have
just proved states that π∗ is also an order-embedding. Thus we get a Cu∼-isomorphism
Cu1(A)/Cu1(I) ≃ Cu1(A/I). □

Definition 3.3.7. Let S ,T and V be countably-based positively directed and positively convex
Cu∼-semigroups. Let f : S −→ T be a Cu∼-morphism. We define im f := {(t1, t2) ∈ T × T :
∃s ∈ S , t1 ≤ f (s) + t2} and ker f := {(s1, s2) ∈ S × S : f (s1) ≤ f (s2)}.

Now consider g : T −→ V a Cu∼-morphism. We say that a sequence ... −→ S
f
−→ T

g
−→

V −→ ... is exact at T if: ker g = im f . We say that it is short-exact if 0 −→ S
f
−→ T

g
−→

V −→ 0 is exact everywhere. Finally, we say that a short-exact sequence is split, if there exists
a Cu∼-morphism q : V −→ S such that g ◦ q = idV .

Proposition 3.3.8. Let S
f
−→ T

g
−→ V be a sequence in Cu∼, where S ,T,V and f , g are as in

Definition 3.3.7. Then:

(i) f is an order embedding if and only if 0 −→ S
f
−→ T is exact.

(ii) If g is surjective then T
g
−→ V −→ 0 is exact. If moreover g(T ) is an ideal of V, then the

converse is true.

Proof. We recall that for 0
0
−→ S , im 0 = {(s1, s2) ∈ S 2 | s1 ≤ s2} and that for T

0
−→ 0,

ker 0 = T 2. Let us consider a sequence S
f
−→ T

g
−→ V in Cu∼.

(i) f is an order-embedding if and only if [s1 ≤ s2 ⇔ f (s1) ≤ f (s2)], that is, if and only if
im 0 = ker f .
(ii) Suppose g is surjective and let v1, v2 be elements in V . Since V is countably-based and
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positively directed, by Lemma 3.2.10 we know that there exists a unique element v in Vmax

such that v2 + v = eVmax . Thus, we have v1 ≤ eVmax + v1 = v2 + v + v1. By surjectivity, there
exists t ∈ T such that g(t) = v + v1. Hence, for any v1, v2 in V there exists t ∈ T such that
v1 ≤ g(t) + v2, that is, ker 0 = T 2 = im g.
Suppose now that T

g
−→ V −→ 0 is exact and that g(T ) is an ideal of V . We know that for any

v1, v2, there exists t ∈ T such that v1 ≤ g(t) + v2. In particular for v2 = 0, we get that for any
v ∈ V , there exists t ∈ T such that v ≤ g(t). Moreover g(T ) is order-hereditary, hence v ∈ g(T )
and thus g is surjective as desired. □

Lemma 3.3.9. Let S
f
−→ T

g
−→ V be a sequence in Cu∼. Also suppose f (S ) is an ideal

of T and that g is constant on the classes of T/ f (S ). By Lemma 3.3.4, we can consider

g : T/ f (S ) −→ V. If g is a Cu∼-isomorphism, then S
f
−→ T

g
−→ V −→ 0 is exact. If moreover

g(T ) is an ideal of V, then the converse is true.

Proof. Suppose T/ f (S )
g
≃ V . Since g is an isomorphism, we know that g is surjective. Thus,

by Proposition 3.3.8, we get exactness at V . Let us show exactness at T . We have the following
equivalences:
(t1, t2) ∈ ker g if and only if g(t1) ≤ g(t2) -by definition- if and only if g(t1) ≤ g(t2) -since g
is constant on classes of T/ f (S )- if and only if t1 ≤ t2 -since g is an order-embedding- if and
only if t1 ≤ f (s) + t2 for some s ∈ S -by definition-, that is, if and only if (t1, t2) ∈ im f . □

Theorem 3.3.10. Let A ∈ C∗ and let I ∈ Lat(A). Consider the canonical short exact sequence:
0 −→ I

i
−→ A

π
−→ A/I −→ 0. Then, the following sequence is short exact in Cu∼:

0 // Cu1(I) i∗ // Cu1(A) π∗ // Cu1(A/I) // 0

Proof. By Corollary 3.2.23, we know that Cu1(I) is an ideal of Cu1(A) and that i∗ is an order-
embedding. Hence by Proposition 3.3.8 (i), the sequence is exact at Cu1(I). From The-
orem 3.3.6, we also know that π∗ is constant on classes of Cu1(A)/Cu1(I) and that π∗ :
Cu1(A)/Cu1(I) ≃ Cu1(A/I) is an isomorphism. Thus using Lemma 3.3.9 the result fol-
lows. □

Corollary 3.3.11. For any A ∈ C∗, consider the canonical exact sequence 0 −→ A
i
−→

A∼
π
−→ A∼/A ≃ C −→ 0. Then there is a short exact sequence:

0 // Cu1(A) i∗ // Cu1(A∼) π∗ // N × {0} // 0

where π∗ is induced by π.
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3.3.12. Now that we have a number of tools regarding ideals and exact sequences in Cu∼, we
will relate ideals, maximal elements, and positive cones through exact sequences. Recall that
for S ∈ Cu∼ countably-based positively directed, we have S + ∈ Cu and that S max ∈ AbGp; see
Proposition 3.2.8.
Also, a Cu-semigroup (respectively Cu-morphism) can be trivially seen as a Cu∼-semigroup
since Cu ⊆ Cu∼. The same can be done for any abelian group (respectively any AbGp-
morphism), -a fortiori, for the abelian group S max and the AbGp-morphism αmax-: Given
G ∈ AbGp, define g1 ≤ g2 if and only if g1 = g2. From this, it follows that also g1 ≪ g2 if
and only if g1 = g2. This defines a functor AbGp −→ Cu∼ which allows us to see the category
AbGp as a subcategory of Cu.
Therefore, in what follows, we consider ν+ and νmax as functors with codomain Cu∼. Finally,
note that all of the proofs will be done in an abstract setting. Further, by Theorem 3.2.30, we
will be able to directly apply those results to Cu(A) and K1(A), also seen as Cu∼-semigroups.

Definition 3.3.13. Let S be a countably-based and positively directed Cu∼-semigroup. Let us
define two Cu∼-morphisms that link S to S + on the one hand and to S max on the other hand,
as follows:

i : S +
⊆
↪−→ S j : S ↠ S max

s 7−→ s s 7−→ s + eS max

Proposition 3.3.14. Let S be a countably-based and positively directed Cu∼-semigroup. Con-
sider the Cu∼-morphisms defined in Definition 3.3.13, then i is an order-embedding, and j is
surjective. Moreover, the following sequence in Cu∼ is split-exact:

0 // S +
i // S

j // S max

q

cc
// 0

where the split morphism is defined by q(s) := s.

Proof. It is trivial to check that i is a well-defined order-embedding Cu∼-morphism. We now
need to check whether j is a well-defined additive map. From Lemma 3.2.10, we know that
s+ eS max ∈ S max, for any s ∈ S . Also, because 2.eS max = eS max , we get that j is additive. Further,
whenever s ≤ s′, we know that s + eS max ≤ s′ + eS max . Since s + eS max ∈ S max, we deduce that
j(s) = j(s′) whenever s ≤ s′. Further, j(0) = eS max . Thus, j is a surjective Cu∼-morphism.
By Proposition 3.3.8, we get exactness of the sequence at S + and S max. Now let us check
that the sequence is exact at S . Let (s1, s2) ∈ ker j. Hence j(s1) = j(s2), that is, s1 + eS max =

s2 + eS max . Since eS max ∈ S +, we easily get that s1 ≤ s1 + eS max = s2 + eS max , which proves that
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ker j ⊆ im i. Conversely, let (s1, s2) ∈ im j. Then we know that there exists a positive element
s ∈ S + such that s1 ≤ s + s2. Since eS max is the maximal positive element of S , we can take
s = eS max . Then we easily get that j(s1) ≤ j(s2) -in fact, they are equal-. Thus we conclude
that im i = ker j, which ends the proof. □

Remark 3.3.15. Note that we could not have used Lemma 3.3.9 here, since S + is not a Cu∼

ideal of S . Indeed the smallest ideal containing S + is S itself.

Theorem 3.3.16. Let S ,T be countably-based and positively directed Cu∼-semigroups. Let
α : S −→ T be a Cu∼ morphism. Viewing the functors ν+ and νmax with codomain Cu∼, as in
Paragraph 3.3.12, we obtain the following commutative diagram with exact rows:

0 // S +
α+

��

i // S

α

��

j // S max

αmax

��

// 0

0 // T+ i
// T

j
// Tmax

// 0

Furthermore, if α is a Cu∼-isomorphism, then α+ is a Cu-isomorphism and αmax is an abelian
group isomorphism.

Proof. We know from Proposition 3.3.14 that the row sequences are split-exact. Besides
α+ = α|S + hence the left-square is commutative. Now take any s ∈ S . we have αmax ◦ jS (s) =
αmax(s+ eS max) = α(s)+ 2eTmax = α(s)+ eTmax = jT ◦ α(s), which proves that the right-square is
commutative.
Now assume that α is an isomorphism. By functoriality of ν+ and νmax, we obtain that α+
is a Cu-isomorphism whose inverse is (α−1)+ and that αmax is an abelian group isomorphism
whose inverse is (α−1)max. □

Corollary 3.3.17. Let S ,T and α be as in Theorem 3.3.16. Assume also that S ,T are positively
convex. Let I be an ideal of S and J := Iα(eImax ), the smallest ideal of T containing α(I) (see
Lemma 3.2.25). We obtain the following commutative diagram with exact rows:

0 // I+
(α|I )+

��

i // I
α|I

��

j // Imax

(α|I )max
��

// 0

0 // J+ i
// J

j
// Jmax

// 0

Furthermore, if α is a Cu∼-isomorphism, then α(I) = J and α|I : I −→ J is a Cu∼-isomorphism.
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A fortiori, we also have (α|I)+ : I+ −→ J+ is a Cu-isomorphism and αI : Imax −→ Jmax is an
abelian group isomorphism.

Proof. We only have to check that whenever α is an isomorphism, then J = α(I) and that
α|I : I −→ J defined as in Lemma 3.2.25 is an isomorphism. Then the conclusion will
follow applying Theorem 3.3.16 to α|I . Suppose that α is a Cu∼-isomorphism. We know that
α|I : I −→ J sends any element x ∈ I to α(x) ∈ J. Since α is an order-embedding, so is
α|I . By Lemma 3.2.25, we know that α(I) ⊆ J and that α(eImax) = eJmax . Now since α is an
isomorphism, we obtain that α−1(eJmax) = eImax . That is, by Lemma 3.2.25, α−1(J) ⊆ I. We
deduce that α(I) = J and that αI is a Cu∼-isomorphism. □

3.3.18. As observed in Paragraph 3.3.12, we can use Theorem 3.2.30, to obtain the following
results in the category C∗:

Theorem 3.3.19. Let A, B ∈ C∗. Let ϕ : A −→ B be a ∗-homomorphism. Then the following
diagram is commutative with exact rows:

0 // Cu(A)

Cu(ϕ)
��

i // Cu1(A)

Cu1(ϕ)
��

j // K1(A)

K1(ϕ)
��

// 0

0 // Cu(B) i // Cu1(B)
j // K1(B) // 0

Furthermore, if Cu1(ϕ) is a Cu∼-isomorphism, then Cu(ϕ) is a Cu-isomorphism and K1(ϕ) is
a AbGp-isomorphism.

Let I ∈ Lat(A). Write J := Bϕ(I)B, the smallest ideal of B containing ϕ(I) and α := Cu1(ϕ).
Let us use the same notations as in Lemma 3.1.19, that is, α = (α0, {αI}I∈Lat(A)). Then the
following diagram is commutative with exact rows:

0 // Cu(I)
α0 |Cu(I)

��

i // Cu1(I)
α|Cu1(I)

��

j // K1(I)

αI

��

// 0

0 // Cu(J)
i
// Cu1(J)

j
// K1(J) // 0

Furthermore, if α is a Cu∼-isomorphism, then α(Cu1(I)) = Cu1(J) and α|Cu1(I) : Cu1(I) −→
Cu1(J) is a Cu∼-isomorphism. A fortiori, we also have α0 |Cu(I) : Cu(I) −→ Cu(J) is a Cu-
isomorphism and αI : K1(I) −→ K1(J) is a AbGp-isomorphism.

Proof. Combine Theorem 3.3.16 and Corollary 3.3.17 with Lemma 3.2.25. □
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3.3.20. Let us summarize our exactness results. For any A, B ∈ C∗, any I ∈ Lat(A) and any
J ∈ Lat(B), we have the following commutative exact diagram:

0

��

0

��

0

(RR0)

��

0

��

0

��

0

(RR0)

��

0 // Cu(J)

��

// Cu1(J)

��

// K1(J)

��

// 0

0 // Cu(I)
α0 |Cu(I)

88

��

// Cu1(I)
α|Cu1(I)

88

��

// K1(I)
αI

88

��

// 0

0 // Cu(B)

��

// Cu1(B)

��

// K1(B)

��

// 0

0 // Cu(A)
α0

88

��

// Cu1(A)
α

88

��

// K1(A)
αmax

88

��

// 0

0 // Cu(B/J) //

��

Cu1(B/J) //

��

K1(B/J) //

��

0

0 // Cu(A/I)

88

//

��

Cu1(A/I)

88

//

��

K1(A/I)

88

//

��

0

0 0 0

0 0 0

where the vertical exact sequences are those obtained passing the canonical short-exact se-
quence of an ideal through their respective functors, and the horizontal sequences are those
described in Theorem 3.3.19.
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Chapter 4

Computation of Cu1-semigroups

In this chapter, the aim is to compute the Cu1-semigroup in some specific settings. In the
process, we will remind the reader about well-know constructions, such as UHF C∗-algebras,
or NCCW 1, among others. Furthermore, since the Cu1-semigroup aims to capture more in-
formation than K0,K1 and Cu, we will also recall the computation of those in some examples.

4.1 The simple case

Proposition 4.1.1. Let A be a simple C∗-algebra. Then Cu1(A) can be described in terms of
Cu(A) and K1(A) as follows:

Cu1(A)
≃
−→ (Cu(A)∗ × K1(A)) ⊔ {0}

(x, k) 7−→

 0 if x = 0
(x, k) otherwise

Proof. Since A is simple, we know that Lat(A) = {0, A}. Therefore, in the description of the
Cu1-semigroup of Proposition 3.1.16, we have Cu f ({0}) = {0} and Cu f (A) = Cu(A)∗. The
result follows. □

4.2 The case of no K1-obstructions

Definition 4.2.1. We say that a C∗-algebra A has no K1-obtructions, if A has stable rank one
and K1(I) is trivial for any I ∈ Lat(A).
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4.2. The case of no K1-obstructions

4.2.2. An approximate finite dimensional algebra, written AF algebra, is an inductive limit of
finite direct sums of full matrix algebras. They are completely classified by their K0 group (see
[24]). Actually they were the first class of C∗-algebras classified in the Elliott’s classification
program. Let us recall some well-known facts:
(i) Any AF algebra A has no K1 obstructions, that is, K1(I) is trivial for any I ∈ Lat(A). In
particular K1(A) ≃ {0}.
(ii) Any AF algebra A has stable rank one.
(iii) They are completely classified by the 3-tuple (K0,K0+, [1]) (in the unital case).

Proposition 4.2.3. Let A be a C∗-algebra with no K1-obstructions. Then Cu1(A) ≃ Cu(A). In
particular, for any AF algebra A, Cu1(A) ≃ Cu(A).

Proof. By assumption, we know that K1(I) is trivial for any I ∈ Lat(A). Therefore, using again
the description of the Cu1-semigroup of Proposition 3.1.16, we have Cu1(A) ≃ Cu(A) × {0}.
The result follows. □

4.2.4. Let us end this section by reminding the reader about a specific subclass of AF algebras,
that will be used later on: The UHF algebras; see e.g [33],[71, Example 4.6].

Definition 4.2.5. Let (pk)k∈N be an enumeration of the prime numbers (p0 = 2). Any natural

number n can be uniquely written as a finite product n :=
l∏

k=0
pmk

k ,mk ∈ N of powers of prime

numbers. We say that mk is the multiplicity of the prime pk in n.
We define a supernatural number q as a formal product q :=

∏
k∈N

pmk
k ,mk ∈ N, of powers of

prime numbers where the multiplicities can be infinite. Note that natural numbers can be
identified with supernatural numbers such that

∑
k∈N

mk < ∞.

Theorem 4.2.6. [33, Theorem 1.12] Let q be a supernatural number and let (qn)n∈N be a
sequence of prime numbers such that q =

∏
n∈N

qn. For any n ∈ N, define An :=
n
⊗

k=0
Mqk and

ϕn(n+1) : An −→ An ⊗ Mqn+1 that sends a 7−→ a ⊗ 1qn+1 . The inductive limit of (An, ϕnm)n is a
well-defined unital simple AF algebra. Moreover, since it does not depend on the sequence
(qn)n chosen, we set Mq := lim

−→
(An, ϕnm). We say that Mq is a uniformly hyperfinite algebra,

also written UHF algebra. These algebras are completely classified by their supernatural
numbers.

Proposition 4.2.7. (see e.g [71, Example 4.6])
(i) Mq ⊗ Mr ≃ Mqr
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(ii) Whenever q2 = q then mk ∈ {0,∞}. We say that Mq is of infinite type and in this case
Mq ⊗ Mq ≃ Mq

(iii) K0(Mq) ≃ Z[ 1
q ] := {k/l, k ∈ Z, l|q} and K1(Mq) ≃ 0

(iv) Cu(Mq) ≃ γ(N[ 1
q ] ⊔ {∞}), where γ is the Cu-completion from PoM to Cu. In particular,

for any p prime natural number, Cu(Mp∞) ≃ N[ 1
p ] ⊔ ]0,∞]. See [3, Chatper 4-(21)].

(v) Any UHF algebra has a unique trace.

Remark 4.2.8. For q := p∞, with p a prime natural number, then Z[1
q ] = Z[ 1

p ] are the well-
known p-adic numbers.

4.3 AI and AT algebras: The case of C([0, 1]) and C(T)

4.3.1. An approximate interval algebra, written AI algebra, is an inductive limit of finite direct
sums of interval algebras, namely C∗-algebras of the form C([0, 1]) ⊗ Mn ≃ C([0, 1],Mn).
Analogously, we say that a C∗-algebra is an approximate circle algebra, written AT algebra,
is an inductive limit of direct sums of circle algebras, namely C∗-algebras of the form C(T) ⊗
Mn ≃ C(T,Mn). These classes have been studied extensively over the years (see [19], [26],
[64], [42] for instance). Among those:
(i) AI and AT algebras have stable rank one.
(ii) AI algebras have trivial K1 group and are completely classified by means of their Cu-
semigroup, see [64], [19] (equivalently by means of tracial data and K0 group, see [73]).
(iii) AT algebras have torsion-free K1 group and under certain hypothesis are classified by
means of their K∗ group, see Chapter 5 for more details.
(iv) Any AI with real rank 0 is an AF algebra. Any AT algebra with trivial K1 is an AI algebra.
The point now is to try and compute the Cu1-semigroup of some C∗-algebras in this class.
Therefore, we will first recall some facts before computing explicitly the Cu1-semigroup of
C(X), for X = [0, 1] or X = T.

Definition 4.3.2. Let X be a compact metric space (hence Hausdorff and second countable) of
covering dimension 1, see Paragraph 6.1.2. Since C(X) is a commutative C∗-algebra observe
that for any f ∈ C(X)+, we have I f = her f , where I f is the ideal generated by f ; (see
Paragraph 1.1.6). Also, it is well-known that: (see e.g [62, Theorem 1],[3, Theorem 3.4])

Cu(C(X))
≃
−→ Lsc(X,N)

[ f ] 7−→ (t 7−→ [ f (t)])
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Moreover, any f ∈ Lsc(X,N) can be (uniquely) described by a ⊆-decreasing sequence of open

sets in X. Indeed, f =
∞∑

n=0
Un, where Un := f −1(]n;+∞]). We say that Lsc(X,N) is generated

by {1|U}U⊆X.

Definition 4.3.3. Let f ∈ C(X)+. We define the support of f as supp f := {t ∈ X, f (t) , 0}.
It is an open subset of X. Analogously, we define the support of [ f ] as supp[ f ] := {t ∈
X, [ f (t)] , 0}.

Proposition 4.3.4. Let [ f ], [g] ∈ Lsc(X,N). We recall that we denote I[ f ] the ideal of Cu(C(X))
generated by [ f ] (see Paragraph 1.3.10). Then, we have the following:
(i) I[ f ] = Lsc(supp[ f ],N).
(ii) If [ f ] ≤ [g] then supp[ f ] ⊆ supp[g]. The converse holds whenever f and g are elements
of C(X)+. In that case, I f = her f = C0(supp f ).
(iii) supp[ f ] ⊆ supp[g] if and only if I[ f ] ⊆ I[g].

Proof. Let [ f ] ∈ Lsc(X,N). Since I[ f ] := {[g] ∈ Lsc(X,N) | [g] ≤ ∞.[ f ]} and ≤ is point-wise
in Lsc(X,N) (i) and (iii) follow. (ii) is proved in [6, Proposition 2.5]. □

Corollary 4.3.5. The open subsets of X, that we writeO(X), are in one-to-one correspondence
with the ideals of Lsc(X,N). In fact, we have the following bijection:

O(X) ≃ Lat(Lsc(X,N))
U 7−→ I1|U

supp(∞I)←− [ I

where∞I is the largest element of I (see Paragraph 1.3.10, Definition 3.1.10). Thus, any ideal
of Lsc(X,N) is countably-based.

4.3.6. Let us restrict ourselves to the interval and the circle. That is, X = [0, 1] or X = T.
Let f ∈ Lsc(X,N). Since supp f is an open subset of X, it can uniquely be described as

a disjoint union of at most countably many open arcs of X. That is, supp f =
n f⋃
i=1

Ui, for

some n f ∈ N, where Ui are pairwise disjoint open arcs of X. In what follows, we recall that
Cu f (I) are the elements of Cu(A) full in Cu(I), for any C∗-algebra A and any I ∈ Lat(A), see

Definition 3.1.10. Also we choose the following convention:
−1
⊕
1
Z =

0
⊕
1
Z = {0}

4.3.7. The C([0, 1]) case.
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Lemma 4.3.8. Let I ∈ Lat(C([0, 1])). Consider U := supp(∞I), the unique open set of [0, 1]
that corresponds to I. We have:
(i) Cu f (I) ≃ Lsc(U,N∗).

(ii) Cu f (I) × K1(I) ≃ Lsc(U,N∗) × (
mU
⊕
1
Z), where mU := n(1|U ) − (1U(0) + 1U(1)).

Proof. By Proposition 4.3.4, we know that Cu(I) = I1|U ≃ Lsc(U,N) and using Proposi-

tion 4.3.4 (iii) we obtain that Cu f (I) ≃ Lsc(U,N∗). Furthermore, write supp 1|U =
n(1|U )⋃
i=1

Ui as

in Paragraph 4.3.6. Since the open arcs of [0, 1] are of the following forms:

]a, b[ [0, 1] ]a, 1] [0, a[ ∅,

and since the K1 groups of the C∗-algebras constructed as continuous map over those open
arcs are respectively the following:

Z {0} {0} {0} {0},

the result follows. □

Theorem 4.3.9. Let V0 := [0, 1[ and V1 :=]0, 1]. Then:
(i)

Cu1(C([0, 1])) ≃
⊔

U∈O([0,1]))
Lsc(U,N∗) × (

mU
⊕
1
Z)

≃ Cu1(C(]0, 1[)) ⊔ (
⊔

i=0,1
Lsc(Vi,N∗) × {0}) ⊔ Lsc([0, 1],N∗) × {0}.

(ii) Cu1(C([0, 1]))/Cu1(C0(]0, 1])) ≃ N × {0}.
(iii) Cu1(C([0, 1]))c ≃ ({n.1|[0,1]}n∈N) × {0}.

Proof. (i) Combine Proposition 3.1.16 with Lemma 4.3.8 and Corollary 4.3.5.
(ii) Since C0(]0, 1])∼ ≃ C([0, 1]), we get the result by Corollary 3.3.11.
(iii) From Corollary 2.1.15, we know that (x, k) ∈ Cu1(C([0, 1])) is a compact element if and
only if x is compact in Lsc([0, 1],N) if and only if x is constant on [0, 1]. □

4.3.10. The C(T) case.

Lemma 4.3.11. Let I ∈ Lat(C(T)). Consider U := supp(∞I), the unique open set of T that
corresponds to I. We have:
(i) Cu f (I) ≃ Lsc(U,N∗).

(ii) Cu f (I) × K1(I) ≃ Lsc(U,N∗) × (
nU
⊕
1
Z), where nU := n(1|U ).
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Proof. By Proposition 4.3.4, we know that Cu(I) = I1|U ≃ Lsc(U,N) and using Proposi-

tion 4.3.4 (iii) we obtain that Cu f (I) ≃ Lsc(U,N∗). Furthermore, write supp 1|U =
n(1|U )⋃
i=1

Ui as

in Paragraph 4.3.6. Since the open arcs of T are of the following forms:

]a, b[ T ∅,

and since the K1 groups of the C∗-algebras constructed as continuous map over those open
arcs are respectively the following:

Z Z {0},

the result follows. □

Theorem 4.3.12. We have
(i) Cu1(C(T)) ≃

⊔
U∈O(T))

Lsc(U,N∗) ×
nU
⊕
1
Z

≃ Cu1(C(]0, 1[)) ⊔ Lsc(T,N∗) × Z.

(ii) Cu1(C(T))/Cu1(C0(]0, 1[)) ≃ N × {0}.
(iii) Cu1(C(T))c ≃ ({n.1|T}n∈N) × Z.

Proof. (i) Combine Proposition 3.1.16 with Lemma 4.3.8 and Corollary 4.3.5.
(ii) Since C0(]0, 1[)∼ ≃ C(T), we get the result by Corollary 3.3.11.
(iii) From Corollary 2.1.15, we know that (x, k) ∈ Cu1(C(T)) is a compact element if and only
if x is compact in Lsc(T,N) if and only if x is constant on T. □

4.3.13. Now that we have computed the Cu1-semigroup of the interval algebra and the circle
algebra, we are able to obtain the Cu1-semigroup of any AI and AT algebra, by computing
inductive limits in Cu∼; see Corollary 2.3.10. Actually, we will next compute a concrete
example of an an AT algebra that is constructed as C(T)⊗UHF (respectively an AI algebra
that can be constructed as C([0, 1])⊗UHF).

4.3.14. Let q be a supernatural number and consider Mq the UHF algebra associated to q.
Consider any sequence of prime numbers (qn)n such that q =

∏
n∈N

qn. Write (An, ϕnm)n the

inductive system associated to (qn)n as in Theorem 4.2.6. Now consider the following AT
algebra: A := lim

−→n
(C(T) ⊗ An, id ⊗ ϕnm). In fact, A ≃ C(T) ⊗ Mq (a similar construction can be

done for the interval).
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Theorem 4.3.15. Let Mq be a UHF algebra and let V0 := [0, 1[ and V1 :=]0, 1]. Then:

(i) Cu1(C(T) ⊗ Mq) ≃
⊔

U∈O(T)
Lsc(U,Cu(Mq)∗) × (

nU
⊕
1

K0(Mq)).

(ii) Cu1(C([0, 1]) ⊗ Mq) ≃
⊔

U∈O(]0,1[)
Lsc(U,Cu(Mq)∗) × (

mU
⊕
1

K0(Mq)) ⊔ (
⊔

i=0,1
Lsc(Vi,Cu(Mq)∗) ×

{0}) ⊔ Lsc([0, 1],Cu(Mq)∗) × {0}.

In particular, for any UHF algebra of infinite type Mp∞ , we get:

(i) Cu1(C(T) ⊗ Mq) ≃
⊔

U∈O(T)
Lsc(U,N[ 1

p ]∗⊔]0,∞]) × (
nU
⊕
1
Z[ 1

p ]).

(ii) Cu1(C([0, 1])⊗Mq) ≃
⊔

U∈O(]0,1[)
Lsc(U,N[ 1

p ]∗⊔]0,∞])×(
mU
⊕
1
Z[ 1

p ])⊔(
⊔

i=0,1
Lsc(Vi,N[ 1

p ]∗⊔]0,∞])×

{0}) ⊔ Lsc([0, 1],N[ 1
p ]∗⊔]0,∞]) × {0}.

Proof. We will only compute the circle case as the interval case is done similarly.
Since UHF algebras are simple, we know that all ideals ofC(T)⊗Mq are of the formC0(U)⊗Mq

for some U ∈ O(T). Hence, using Künneth formula (see Theorem 1.1.18), we obtain that
K1(C0(U) ⊗ Mq) ≃ (

nU
⊕
1
Z) ⊗ K0(Mq) ≃

nU
⊕
1

K0(Mq). On the other hand, by Theorem 1.3.15, we
compute that Cu(C0(U)⊗Mq) ≃ Lsc(U,Cu(Mq)). The result follows from Proposition 3.1.16.

□

4.4 The NCCW 1 complexes

4.4.1. In this section, we will be interested in a more general class: the NCCW 1 complexes.
We refer the reader to [63] for a classification of some of these C∗-algebras by means of Cu∼,
an augmented version of the Cuntz semigroup.
First, we will recall the general definition of NCCW 1 complexes, recall the compute of their
K-theory and their Cuntz semigroup. Observe that NCCW 1 algebras contain the AF, AI, AT
and AHd algebras. We will define the latter and specify a bit more about their classification
that has been widely studied (see e.g [25],[26],[42]) in the next chapter (see Chapter 5). Fi-
nally, we will see that a priori Cu1 does not pass through pullbacks, and hence does not allow
a direct computation from the construction of the C∗-algebra.

Definition 4.4.2. Let E, F be finite dimensional C∗-algebras and let ϕ0, ϕ1 : E −→ be two ∗-
homomorphisms. We define a non-commutative CW complex of dimension 1, written NCCW 1,
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as the following pullback:
A //

��

C([0, 1], F)

(ev0,ev1)
��

E
(ϕ0,ϕ1)

// F ⊕ F

We write such a pullback as A := A(E, F, ϕ0, ϕ1) and refer to the class of inductive limits of
finite direct sums of NCCW 1 as NCCW 1 algebras.

Lemma 4.4.3. Any A ∈ NCCW 1 has stable rank one.

Proof. Let A := A(E, F, ϕ0, ϕ1) be a pullback as constructed above. Since the map (ev0, ev1)
is surjective and since both E and C([0, 1], F) have stable rank one, using [16, Theorem 4.1],
we deduce that A has stable rank one. The result follows for any A ∈ NCCW 1 as stable rank
one passes through direct sums and inductive limits (see e.g. [60, Theorem 5.1]). □

Proposition 4.4.4. Let A := A(E, F, ϕ0, ϕ1) be a NCCW 1 complex and let p, l be the number
of terms in the finite direct sum of E, F respectively. We write α := K0(ϕ0) : Zp −→ Zl and
β := K0(ϕ1) : Zp −→ Zl. Finally we write γ0 := Cu(ϕ0) : N

p
−→ N

l
and δ0 := Cu(ϕ1) :

N
p
−→ N

l
. Then:

(i) K0(A) ≃ ker(α − β) ⊆ Zp.
(ii) K1(A) ≃ Zl/ im(α − β).
(iii) Cu(A) ≃ {( f , b) ∈ Lsc([0, 1],N

l
) ⊕ N

p
| f (0) = γ0(b), f (1) = δ0(b)}.

Proof. The proof of (i) and (ii) can be found for instance in [59, §2.4]. We still give a sketch
here:
Define S F := C0(]0, 1[) ⊗ F and consider the short exact sequence: 0 −→ S F

i
−→ A

π
−→

E −→ 0. In order to prove (i) and (ii), we will use the 6-term exact sequence of K-Theory,
see Theorem 1.1.13. From the proof of Theorem 1.1.13 (see [9, Theorem 9.3.1]), we get that
δ0 = α − β and that K1(S F) ≃ K0(F). Since K0(S F) and K1(E) are trivial, we have that the
following diagram is exact:

0
K0(i)// K0(A)

K0(π) // K0(E)

α−β

��
0

0

OO

K1(A)
K1(π)
oo K1(S F)

K1(i)
oo
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which gives us the following exact sequence that proves (i)-(ii):

0 −→ K0(A) −→ K0(E)
α−β
−→ K0(F) −→ K1(A) −→ 0

(iii) This is a direct application of [3, Theorem 3.1]. □

4.4.5. As the work done in [3] to compute the Cu-semigroup of NCCW 1, we would like to use
the pullback structure of (non simple) NCCW 1 complexes to compute their Cu1-semigroup.
However, knowing the explicit computation of C([0, 1]) and C(T), we deduce that a priori,
pullbacks do not pass through Cu1.
First, observe that the circle algebra can be written as follows: C(T) ≃ A(C,C, id, id). Now
consider the pullback (in the category PoM∼):

Cu1(C([0, 1])) ⊕
Cu1(C⊕C)

Cu1(C) := {(s, t) ∈ Cu1(C([0, 1])) ⊕ Cu1(C) | (Cu1(ev0),Cu1(ev1))(s) = (t, t)}

≃ {(x, k) ∈ (Lsc([0, 1],N) × K1(Ix)) | x(0) = x(1)}

Cu1(C([0, 1])) ⊕
Cu1(C⊕C)

Cu1(C) ≃ Cu1(C(]0, 1[)) ⊔ Lsc(T,N∗) × {0}.

Define the following PoM∼-morphism:

β : Cu1(C(T)) −→ Cu1(C([0, 1])) ⊕
Cu1(C⊕C)

Cu1(C)

(x, h) 7−→

 (x, h) if supp(x) , T
(x, 0) else

By Theorem 4.3.12, we deduce that β is a surjective morphism. However, since β(1|T, k) =
β(1|T, k′) for any k, k′ ∈ Z, it is not an order-embedding and a fortiori not an isomorphism. In
fact, it is clear that there is no PoM∼-isomorphism between Lsc(T,N∗)×{0} and Lsc(T,N∗)×Z,
since the upper is an upward-directed PoM∼ whereas the latter is not, and hence there is no
PoM∼-isomorphism between Cu1(C(T)) and Cu1(C([0, 1])) ⊕

Cu1(C⊕C)
Cu1(C).

4.4.6. We conclude this chapter by reminding that Robert ([63]) has been able to classify
inductive limits of NCCW 1 by means of an augmented version of the Cu-semigroup. One
main restriction of this classification is that the C∗-algebras must have trivial K1-groups. Even
though the Cu1-semigroup cannot be as nicely computed as the Cu-semigroup, it seems that
it would be of interest to investigate on extending the classification of Robert, allowing a
torsion-free non trivial K1 for instance, by means of Cu1.
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Chapter 5

Relation of Cu1 with existing
K-Theoretical invariants

The aim of this chapter is to functorially recover existing invariants and if possible, their
classification results. In the first section of this chapter, we explain well-known techniques
that have been used over the last decades in order to obtain classification of mainly simple
C∗-algebras. Then, in the second section, we functorially recover the K∗ group. Finally, we
recall which invariant is used to classify AH algebras with the ideal property (see [35]), and
check up to which extent we can relate the Cu1-semigroup to this K-Theoretical invariant.
As before, we shall assume that A is a separable C∗-algebra with has stable rank one. We recall
that in order to ease the notations, we use C∗ to denote the category of separable C∗-algebras
of stable rank one.

5.1 Classification Machinery - Existing work

5.1.1. A first and intuitive approach is to find a functor F that is complete for a certain class
of C∗-algebras. That is, any isomorphism between the codomain objects in the codomain cat-
egory can be lifted to an isomorphism between the C∗-algebras. A second approach, stronger,
consists in ‘classifying homomorphisms’ between C∗-algebras from a ‘domain’ class to a
‘codomain’ class. Actually, the latter implies the upper over the intersection of the domain
and codomain. One has to make sure that the codomain class is large enough, as one can
usually only enlarge the domain subclass. Let us get into details.

Definition 5.1.2. (Complete Invariant)
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Let C be a category and let F : C∗ −→ C be a (covariant) functor. We say that F is a complete
invariant for a certain class of C∗-algebras, C∗F , if for any A, B in C∗F such that there exists

F(A)
α
≃ F(B), then there exists A

ϕ
≃ B such that F(ϕ) = α. In other words, isomorphisms in C

lift to isomorphisms in C∗.

Remark 5.1.3. It can be useful to introduce the notion of weakly-complete invariant. This
means that an isomorphism at the level of the codomain category implies an isomorphism at
the level of C∗-algebras without knowing it actually corresponds to a lift.

Definition 5.1.4. (e.g. [48, Definition 1.10.11])
Let A be a unital C∗-algebra, let ϕ, ψ : A −→ B be ∗-homomorphisms. We say that ϕ and ψ

are approximately unitarily equivalent, and we write ϕ ∼aue ψ, if for every ϵ > 0, and every
finite subset E of A, there exists a unitary w of B such that ∥wϕ(x)w∗ − ψ(x)∥ < ϵ, for any
x ∈ E.
Equivalently, ϕ ∼aue ψ if there exists a sequence of unitary elements (wn)n of B∼ such that
∥wnϕ(x)w∗n − ψ(x)∥ −→

n∞
0, for any x ∈ A.

Definition 5.1.5. Let F be a functor from the category C∗ into an abstract category C. Let A, B
be C∗-algebras. We say that F classifies homomorphisms from A to B, if for any α : F(A) −→
F(B), the two following conditions hold:
(Existence) There exists ϕ : A −→ B such that F(ϕ) = α.
(Uniqueness) For any other ∗-homomorphism ψ : A −→ B such that F(ψ) = α, then ϕ ∼aue ψ.
Those conditions are equivalent with having (HomC∗(A, B))/∼aue ≃ HomC(F(A), F(B)).

Remark 5.1.6. Again, it will be useful to consider a functor F that weakly classifies homo-
morphisms, that is, a functor F such that the uniqueness condition holds. Or equivalently,
(HomC∗(A, B))/∼aue ↪−→ HomC(F(A), F(B)).

Lemma 5.1.7. (Elliott’s Intertwining lemma, see e.g. [48, Theorem 1.10.16])
Let A, B be C∗-algebras. Suppose there exist two ∗-homomorphisms ϕ : A −→ B and ψ :
B −→ A such that ψ ◦ ϕ ∼aue idA and ϕ ◦ ψ ∼aue idB. Then, there exists a ∗-isomorphism
χ : A ≃ B such that χ ∼aue ϕ.

5.1.8. This lemma is mostly used in the context of two inductive systems of C∗-algebras that
approximately intertwine. Actually, we will obtain an analogous version of this in the category
Cu in Chapter 6.
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Theorem 5.1.9. Let C be a category and let F : C∗ −→ C be a functor that classifies homo-
morphisms from any algebra of C∗1 to any algebra of C∗2, where C∗1,C

∗
2 are subclasses of C∗.

Then F is a complete invariant for C∗1 ∩C∗2.

Proof. Let A, B be in C∗1 ∩ C∗2 and let α : F(A) ≃ F(B) be an isomorphism. Then there exist
two ∗-homomorphisms (both unique up to approximate unitary equivalence) ϕ : A −→ B and
ψ : B −→ A such that F(ϕ) = α and F(ψ) = α−1. Hence, by functoriality of F, we obtain
that F(ψ ◦ ϕ) = idF(A) = F(idA), and thus ψ ◦ ϕ ∼aue idA. By a similar argument, we have
ϕ ◦ ψ ∼aue idB. The conclusion follows using Elliott’s Intertwining lemma. □

5.1.10. In practice, one has to choose C∗2 to be the largest possible class. However C∗1
can be taken really small (even up to a single algebra), as C∗1 can usually be extended to
AC∗1 := {Inductive limits of direct sums of building blocks of C∗1 and their unitizations}. As
an example, one can look at the classification of AI algebra algebras by means of the Cu-
semigroup using the classification of homomorphisms from C0(]0, 1]) to any C∗-algebra of
stable rank one (see [64]).
We will now define the categorical notion of ‘recovering’a functor, its information (and a for-
tiori, its classification properties), from another one. It allows us to check whether an invariant
is ‘stronger’ than another one.

Definition 5.1.11. Let C,D be arbitrary categories and let I : C∗ −→ C and J : C∗ −→
D be (covariant) functors. Let H : D −→ C be a functor such that there exists a natural
isomorphism η : H ◦ J ≃ I (see Definition 3.2.28). Then we say we can recover I from J
through H.

Theorem 5.1.12. Let C,D be arbitrary categories and let I : C∗ −→ C and J : C∗ −→ D be
(covariant) functors. Suppose that there exists a functor H : D −→ C such that we recover I
from J through H.
(i) If I is a complete invariant for C∗I , then J is a weakly-complete invariant for C∗I .
(ii) If I classifies homomorphisms from C∗1 to C∗2, then J weakly classifies homomorphisms
from C∗1 to C∗2.
If moreover H is faithful, then J is a complete invariant for C∗I and J classifies homomorphisms
from C∗1 to C∗2. In this case, we say that we can fully recover I from J through H.

Proof. Let I, J and H be functors as in the theorem.
(i) Suppose that I is a complete invariant for C∗I . Take any two C∗-algebras A, B ∈ C∗I . If
there exists an isomorphism α : J(A) ≃ J(B), by functoriality, we get an isomorphism H(α) :
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H ◦ J(A) ≃ H ◦ J(B). Using the natural isomorphism H ◦ J ≃ I, we know that H(α) gives
us an isomorphism β : I(A) ≃ I(B). By hypothesis, we can lift β to an isomorphism in the
category C∗. That is, there exists a ∗-isomorphism ϕ : A ≃ B such that I(ϕ) = β. We have just
shown that J is weakly-complete for C∗I .
Suppose now that H is faithful. Then the natural isomorphism exactly gives us that H ◦ J(ϕ) =
H(α). Now since H is faithful, we conclude that J(ϕ) = α. That is, J is a complete invariant
for C∗I .
(ii) Suppose that I classifies homomorphisms from A to B. Let α : J(A) −→ J(B) be any
morphism in D. If ϕ, ψ : A −→ B are ∗-homomorphisms such that J(ϕ) = J(ψ) = α, then
composing with H, we get H ◦ J(ϕ) = H ◦ J(ψ) = H(α). Thus, I(ϕ) = I(ψ), which gives us,
by hypothesis, that ϕ ∼aue ψ. Hence J weakly classifies homomorphisms from A to B.
Finally if H is faithful, then for any α : J(A) ≃ J(B), using again the natural isomorphism
H ◦ J ≃ I, we obtain: For any lift ϕ : A −→ B of β : I(A) −→ I(B), where β is the morphism
obtained from H(α) as in the proof of (i) above, we have H ◦ J(ϕ) = H(α). Since H is faithful,
we get that α = J(ϕ), from which we deduce that J classifies homomorphisms from A to
B. □

5.1.13. We observe that by recovering a functor I from another functor J (through a functor
H), we only weakly recover its classification properties. This might seem counter-intuitive,
but as J pretends to capture more information on the C∗-algebras, the category considered is
usually wider than what we had in the first place. Thus, one usually has to prove again that
morphisms indeed lift in a nice way. In practice, H will not be faithful, unless for instance
restricting abstractly the category D of J to ensure that morphisms lift. We will see now
concrete uses of this theorem to recover existing classifying functors from Cu1, and in the
process, recall some classification results that have been obtained over the last decades.

Proposition 5.1.14. By Theorem 3.2.30, we can recover Cu and K1 from Cu1 through ν+ and
νmax respectively. As to be expected, neither ν+ nor νmax are faithful functors.

Proof. We use the natural isomorphisms of Theorem 3.2.30 to directly get the result. □

Corollary 5.1.15. Let ϕ, ψ : A −→ B be two ∗-homomorphisms. If Cu1(ϕ) = Cu1(ψ) then
Cu(ϕ) = Cu(ψ) and K1(ψ) = K1(ϕ).
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5.2 Recovering the K∗ invariant

5.2.1. In this section, we give some insight on K∗ := K0 ⊕ K1. Although notations might
slightly differ, all of this can be found in [25] and [26]. This functor classifies AHd algebras
(a subclass of NCCW 1, see Paragraph 4.4.1) of real rank zero and homomorphisms between
AT algebras of real rank zero.

5.2.2. Elliott-Thomsen dimension-drop interval algebras:
These are one of the first NNCW1 constructed, as they generalize the construction of the circle
as a pullback of the interval but in the non-commutative case. Let q ∈ N. An Elliott-Thomsen
dimension-drop interval algebra is constructed as Iq := A(C ⊕ C,Mq, π0 ⊗ 1q, π1 ⊗ 1q), where
π0, π1 : C ⊕ C −→ C are the respective projections on each component of the direct sum.
By Proposition 4.4.4, we know that:

K0(Iq) ≃ Z Cu(Iq) ≃ { f ∈ Lsc([0, 1],N) | f (0), f (1) ∈ qN}
K1(Iq) ≃ Z/qZ ≃ { f ∈ Lsc([0, 1], 1

qN) | f (0), f (1) ∈ N}

5.2.3. An approximately homogeneous dimensional algebra, written AHd algebra, is an in-
ductive limit of finite direct sums of the form Mn(Iq) and Mn(C(X)), where Iq := { f ∈
Mq(C([0, 1])) such that f (0), f (1) ∈ C1q} and X is one of the following finite connected CW
complexes: {∗},T, [0, 1]. Observe that we have the following inclusions: AF ⊆ AI,AT ⊆
AHd ⊆ NCCW 1.

Definition 5.2.4. (see e.g. [9, Definition 6.2.1]) An ordered group (G,G+) is an abelian group
G together with a distinguished submonoid G+, called the positive cone, such that:
(i) G+ −G+ = G.
(ii) G+ ∩ (−G+) = {0}.
G+ defines a partial order on G as follows: x ≤ y in G if, y − x ∈ G+. Further, an element
u ∈ G+ is called an order-unit if for any x ∈ G there exists n ∈ N such that x ≤ nu.
We say that the 3-tuple (G,G+, u) is a ordered group with order-unit.

An ordered group morphism between two ordered groups (G,G+), (H,H+) is a group mor-
phism ϕ : G −→ H such that ϕ(G+) ⊆ H+. If moreover (G,G+), (H,H+) admit u, v as respec-
tive order-units and if ϕ(u) ≤ v, we say that ϕ preserves the order-unit.

Lastly, we define the category of ordered groups with order-unit, denoted AbGpu, as the cat-
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egory whose objects are ordered groups with order-unit and morphisms are ordered group
morphisms that preserve the order-unit.

Lemma 5.2.5. Recall the Grothendieck construction of Paragraph 1.1.11.
(i) If S is monoid with cancellation, then (Gr(S ), S ) is an ordered group. If moreover S has
an order-unit u, then (Gr(S ), S , u) ∈ AbGpu.
(ii) Conversely, for any ordered group (G,G+) such that G+ is a monoid with cancellation,
then (G,G+) ≃ (Gr(G+),G+) as ordered groups.

Proof. (i) Let S be a monoid with cancellation. We recall that in this case, Gr(S ) := S × S/ ∼
where (m1, n1) ∼ (m2, n2) if m1 + n2 = m2 + n1. Naturally define Gr(S )+ := {[(m, 0)] ∈
Gr(S ),m ∈ S }. Then Gr(S )+ ≃ S and it is easy to see that Gr(S )+ ∩ (−Gr(S )+) = {0}. Also,
observe that [(m, 0)] + [(0,m)] = [(0, 0)] and hence −Gr(S )+ = {[(0,m)] ∈ Gr(S ),m ∈ S },
which proves (i).
(ii) Let (G,G+) be an ordered group and suppose that G+ has cancellation. We have just
proved that (Gr(G+),G+) is an ordered group. Now consider α : Gr(G+) −→ G given by
α([(m, n)]) = m − n for any m, n ∈ G+. It is routine to check that α is a AbGp-isomorphism
such that α(G+) ⊆ G+. □

Definition 5.2.6. Let A be a (unital) C∗-algebra. We define K∗(A) := K0(A) ⊕K1(A). We also
define K∗(A)+ := {([p]K0(A), [v]K1(A))} ⊆ K0(A) ⊕ K1(A), where p is a projection in A ⊗ K and
v is a unitary in the corner p(A ⊗ K)p. Notice that we look at the K1 class of v in A, that is,
[v + (1 − p)]K1(A). Finally, we define 1K∗(A) := ([1A]K0 , 0K1).

Proposition 5.2.7. ([26, §1.2.2])
Let A, B ∈ C∗1. Then (K∗(A),K∗(A)+) is an ordered group and 1K∗(A) ∈ K∗(A)+ is an order-unit
of K∗(A). Thus, (K∗(A),K∗(A)+, 1K∗(A)) ∈ AbGpu.
Moreover, for any ∗-homomorphism ϕ : A −→ B, we have K0(ϕ)⊕K1(ϕ) : K∗(A) −→ K∗(B) is
an ordered group morphism that preserves the order-unit. We write K∗(ϕ) := K0(ϕ) ⊕ K1(ϕ).
Thus, we obtain a covariant functor:

K∗ : AHd −→ AbGpu

A 7−→ (K∗(A),K∗(A)+, 1K∗(A))
ϕ 7−→ K∗(ϕ)

5.2.8. We do not give a proof of the above, but we remind the reader that whenever a C∗-
algebra A has stable rank one -which is the case of any AHd algebra-, then the monoid V(A)

p. 98



5.2. Recovering the K∗ invariant

has cancellation and hence K0(A)+ can be identified with V(A) and thus (K0(A),V(A)) is an
ordered group.
Also, for any ∗-homomorphism ϕ : A −→ B, since that ϕ|pAp : pAp −→ qBq, where q := α(p),
one can check that K∗(ϕ) is indeed a well-defined ordered group homomorphism that respects
the order-unit.
Finally, we also recall that in the stable rank one case, the Murray-von Neumann equivalence
and the Cuntz equivalence agree on the projections of A⊗K and that V(A) ≃ Cu(A)c. That is,
any compact element of Cu(A) is the class of some projection of A ⊗ K .
Among classification results obtained in the references, we will only mention two notable
ones that catch our interest:

Theorem 5.2.9. ([26, Corollary 4.9], [25, Theorem 7.3 - Theorem 7.4])
(i) The functor K∗ is a complete invariant for (unital) AHd algebras of real rank zero.
(ii) Let A, B be (unital) AT algebras of real rank zero and let α : K∗(A) −→ K∗(B) be a scaled
ordered group morphism. Then there exists a unique ∗-homomorphism (up to approximate
unitary equivalence) ϕ : A −→ B such that K∗(ϕ) = α.

5.2.10. The aim now is to recover K∗ from Cu1 and thus show that Cu1 contains more infor-
mation than K∗. For that purpose, we first need to define the category of Cu∼-semigroups with
order-unit, that will be written Cu∼u . Further, we are going to create a functor H∗ : Cu∼u −→
AbGpu such that H∗ ◦Cu1 ≃ K∗ as functors. Moreover, restricting to an adequate subcategory
of Cu∼u , we will see that H∗ is faithful.

Definition 5.2.11. Let S be a Cu∼-semigroup. We say that S has weak cancellation if x+ z ≪
y + z implies x ≤ y for x, y, z ∈ S . We say that S has cancellation of compact elements if
x + z ≤ y + z implies x ≤ y for any x, y ∈ S and z ∈ S c.

Lemma 5.2.12. Let S be a Cu∼-semigroup. If S has weak cancellation, then S has cancella-
tion of compact elements.

Proof. Let S ∈ Cu∼ such that S has weak cancellation. Let x, y ∈ S and let z ∈ S c. Suppose
that x+ z ≤ y+ z. Consider a≪-increasing sequence (xn)n in S whose supremum is x given by
(O2). Since z ≪ z and since xn ≪ y for any n, we have that xn+z ≪ y+z for any n ∈ N. Using
weak cancellation and passing to suprema, we deduce that x ≤ y, which ends the proof. □

Proposition 5.2.13. ([63, Proposition 2.1.3],[68, Proposition 4.2 - Theorem 4.3])
Let A ∈ C∗. Then Cu(A) has weak cancellation and a fortiori Cu(A) has cancellation of

compact elements.
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Corollary 5.2.14. Let A ∈ C∗. Then Cu1(A) has weak cancellation and a fortiori Cu1(A) has
cancellation of compact elements.

Proof. Combine Proposition 5.2.13 with Corollary 2.1.15 to get the result. □

Definition 5.2.15. Let S be a countably-based positively directed and positively convex Cu∼-
semigroup. Suppose that S has cancellation of compact elements. Also suppose that S +
admits a compact order-unit. That is, there exists u ∈ S +,c such that u is an order-unit of S +
(see Definition 1.3.8).
We say that (S , u) is a Cu∼-semigroup with compact order-unit. Now, a Cu∼-morphism be-
tween two Cu∼-semigroups with compact order-unit (S , u), (T, v) is a Cu∼-morphism α : S −→
T such that α(u) ≤ v.
We define the category of Cu∼-semigroups with compact order-unit, denoted Cu∼u , as the cat-
egory whose objects are Cu∼-semigroups with order-unit and morphisms are Cu∼-morphisms
that preserve the order-unit.

Lemma 5.2.16. The assignment

Cu1,u : C∗1 −→ Cu∼u
A 7−→ (Cu1(A), ([1A], 0))
ϕ 7−→ Cu1(ϕ)

from the category of unital separable C∗-algebras of stable rank one, denoted by C∗1, to the
category Cu∼u is a covariant functor.

Proof. As stated in Proposition 5.2.13, we know that Cu1(A)+ has cancellation of compact
elements. Plus, we know that ([1A], 0) is a compact order-unit of Cu1(A)+, so it easily follows
that Cu1,u(A) ∈ Cu∼u . Finally, it is trivial to see that Cu1(ϕ)([1A]) ≤ [1B], which ends the
proof. □

Lemma 5.2.17. The assignment

H∗ : Cu∼u −→ AbGpu

(S , u) 7−→ (Gr(S c), S c, u)
α 7−→ Gr(αc)

from the category Cu∼u to the category AbGpu is a covariant functor.
Moreover, if we restrict the domain of H∗ to the category of algebraic Cu∼u -semigroups with
compact order-unit, denoted by Cu∼u,alg, then H∗ becomes a faithful functor.
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Proof. Let (S , u) ∈ Cu∼u . By Corollary 5.2.14, we know that S c is a monoid with cancellation
and hence, using Lemma 5.2.5, we deduce that (Gr(S c), S c, u) is an ordered group with order-
unit. Now let α : S −→ T be a Cu∼u -morphism between two Cu∼-semigroups with order-unit
(S , u), (T, v). By functoriality of νc, it follows that αc : S c −→ Tc is a PoM∼-morphism,
and hence that Gr(αc) : Gr(S c) −→ Gr(Tc) is a group morphism such that Gr(αc)(S c) ⊆ Tc.
Finally, using that α(u) ≤ α(v), we obtain Gr(αc)(u) ≤ v. We conclude that H∗ is a well-
defined functor.
Now, we have to show that if we restrict the domain of H∗ to Cu∼sc,alg, then H∗ becomes faithful.
Let α, β : (S , u) −→ (T, v) be two scaled Cu∼-morphisms between (S , u), (T, v) ∈ Cu∼sc,alg such
that H∗(α) = H∗(β). In particular, αc = βc, and since we are in the category of algebraic
Cu∼-semigroups, any element is supremum of increasing sequences of compact elements.
Thus any morphism is entirely determined by its restriction to compact elements. One can
conclude that α = β which terminates the proof. □

Theorem 5.2.18. The functor H∗ : Cu∼u −→ AbGpu in Lemma 5.2.17 yields a natural isomor-
phism η∗ : H∗ ◦ Cu1,u ≃ K∗.

Proof. First we prove that K∗(A)+ ≃ Cu1(A)c as monoids and the result will follow from
Lemma 5.2.5 (ii).
By Proposition 2.4.4 we know that Cu1(A)c is a monoid. Now consider [(a, u)] ∈ Cu1(A)c. By
Corollary 2.1.15, we know that [a] is a compact element of Cu(A). Besides, since A has stable
rank one, we know that we can find a projection p ∈ A ⊗ K such that [p] = [a] in Cu(A).
So without loss of generality, we now describe compact elements of Cu1(A) as classes [(p, u)]
where p is projection in A ⊗ K and u is a unitary element in her p.
On the other hand, by Theorem 3.2.30, we have Cu1(A)max ≃ K1(A), where the AbGp-
isomorphism is given by [(sA⊗K , u)] 7−→ [u], where sA⊗K is any strictly positive element of
A⊗K . Combined with Proposition 3.3.14, we get a monoid morphism j : Cu1(A) −→ K1(A).
Now set:

α : Cu1(A)c −→ K∗(A)+
[(p, u)] 7−→ ([p], j([p, u]))

It is routine to check that α is monoid morphism. Further, observe that j([p, u]) = δIpA([u])

for any [(p, u)] ∈ Cu1(A)c, where δIpA : K1(her p)
K1(i)
−→ K1(A) (see Definition 3.1.7). Thus,

j([p, u]) = [u + (1 − p)]K1(A). Furthermore, since A has stable rank one, the Murray-von
Neumann equivalence and the Cuntz equivalence agree on projections. It is now clear that
α is an isomorphism and hence Cu1(A)c ≃ K∗(A)+ as monoids. Using Lemma 5.2.5 (ii),
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it follows that (K∗(A),K∗(A)+) ≃ (Gr(Cu1(A)c),Cu1(A)c) as ordered groups. Finally, it is
routine to check that [(1A, 1A)] is a compact order-unit for Cu1(A) (a fortiori, an order-unit for
(Gr(Cu1(A)c),Cu1(A)c)) and that α([(1A, 1A)]) = 1K∗(A).
We conclude that for any A ∈ C∗1, there exists a natural ordered group isomorphism η∗A :
H∗ ◦ Cu1,u(A) ≃ (K∗(A),K∗(A)+, 1K∗(A)) that preserves the order-unit and hence there exists a
natural isomorphism η∗ : H∗ ◦ Cu1,u ≃ K∗. □

Corollary 5.2.19. By restricting to the category Cu∼u,alg, we can fully recover K∗ from Cu1,u

through H∗. A fortiori, we have:
(i) Cu1,u is a complete invariant for AHd algebras of real rank zero.
(ii) Cu1,u classifies homomorphisms of AT algebras with real rank zero.

5.2.20. (Open line of research)
As briefly explained in the introduction, the original Elliott invariant has been extended over
the years, on the one hand to reajust the conjecture of the classification program when needed
and on the other hand to be able to classify other classes of C∗-algebras; in particular in the
non-simple case.
In the work of Gong, Jiang, Li and Pasnicu (among others, -see [34], [35]-) a new notion and a
new invariant to classify a rather large class of AH algebra containing the simple and the real
rank case, was introduced: AH algebras with ideal property of no dimension growth. The new
invariant created was called Inv0(A) := (K(A),K(A)+,Σ(A), {Aff T (pAp)}[p]∈Σ(A)), where K is
the total K-Theory, Σ(A) is scale of K0(A), and Aff T (pAp) is the Banach space of continuous
affine maps from the tracial space of corner algebras to R, together with compatibility condi-
tions. Indeed, they finally manage to classify a subclass of well-behaved AH algebras with
the ideal property of no dimension growth by means of Inv0, to subsequently classify all AH
algebras with the ideal property and no dimension growth adding a new ingredient to Inv0 that
involves the Hausdorffized K1 group of corner algebras and some more compatibility axioms,
see [34], [35].
We have been investigating whether it would be possible to recover this kind of information,
at least partially. To do so, we would have to create a suitable category that would allow us
to abstractly describe the objects and the compatibility axioms that define these invariants. It
would seem that we are able to recover {Aff T (pAp)}[p]∈Σ(A) and its compatibility axioms, to-
gether with the Hausdorffized K1 group of corner algebras, whereas the compatibility axioms
for the latter and the total K-Theory seem more problematic.
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Chapter 6

Intertwinings in the category Cu

This chapter contains tools and techniques that will be defined for Cu-semigroups of the form
Lsc(X, S ), where X is a compact Hausdorff metric space of covering dimension 1 and S is a
countably-based Cu-semigroup. In the first section, we define the notion n-piecewise charac-
teristic functions, describe their properties, and prove that the set of these lower-semicontinuous
maps is in fact a countable basis for Lsc(X, S ). The second section is focused on metrics in
the category Cu. The third and fourth section are analogous versions of approximate inter-
twinings in the category Cu.
Observe that all of this will be of a particular interest in a next chapter, as it will allow us
to use an approximate intertwining argument in a context linked to the Cuntz semigroup of
NCCW 1 algebras.

6.1 Piecewise characteristic functions

Definition 6.1.1. [28, Definition 1.1.1]
Let X be a topological space and let U = {Uk}k∈Λ be a cover of X. For any x ∈ X, we call
the multiplicity of x inU, the number of sets ofU containing x. Furthermore, we say that X
is of covering dimension n, if for any open cover U of X, there exists an open refinement of
U of multiplicity at most n + 1, that is, any x ∈ X belongs to at most n + 1 open sets of the
refinement.

6.1.2. In the entire chapter, X is a compact metric space (hence Hausdorff, second countable)
of covering dimension 1 and S is a countably-abased Cu-semigroup.
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Definition 6.1.3. Let X be a topological metric space of covering dimension 1. We call a 1-
thin cover of X, any closed finite coverU := {Uk}

m
k=1 of X where any Uk is an open connected

set of X and such that for any k , l, we have Uk ∩ Ul = ∅.
Furthermore, if there exist m points {yk}

m
k=1 of X and a constant R ∈ R+ such that for any k, we

have Uk = B(yk,R/m), then we say thatU is a 1-thin cover of size 1/m.

Proposition 6.1.4. Any compact (Hausdorff) metric space X of covering dimension 1 admits
1-thin covers.

Proof. Let X be a compact (Hausdorff) metric space of covering dimension 1. Let V :=
{Vk}k∈Λ be an open cover of X. We can find a refinement W of V that has multiplicity 1.
Besides, since X is a metric space, we can suppose that W := {Wk}k∈Λ are open balls of X.
Using compactness of X, we can extract a finite coverW′ := {Wk}

n
k=1 ofW. Thus, we have

constructed a finite cover of open balls of X that has multiplicity 1. Now let us denote the
interior of a set X by X◦ and let us consider:

Vk := (Wk \ (∪
l,k

Wl))◦ Vll′ := Wl ∩Wl′

for any k, l, l′{1, ..., n} such that l , l′.
WriteU := {Vk}k ∪ {Vll′}l,l′ . We will prove thatU is a 1-thin cover of X.
Let k, l, l′{1, ..., n} such that l , l′. Observe that Wk \ (∪

l,k
Wl) = ∪

l,k
(Wk \ (Wk ∩Wl)). It follows

that Vk ∪ Vll′ = ∅. Also, it is easy to see that Vk,Vll′ are open connected sets. We only have to
check thatU is a closed cover of X.
Let x ∈ X. SinceW′ is a finite cover of X, there exists k ∈ {1, ..., n} such that x ∈ Wk. From
the observation made just above, one can deduce that Wk = (∪

l,k
Vkl) ∪ Vk. We conclude that

there exists a closed set ofU containing x and hence the result follows. □

Definition 6.1.5. Let X be compact metric space of covering dimension 1 and let S be a
countably-based Cu-semigroup. Consider the Cu-semigroup Lsc(X, S ). A map g : X −→ S ,
is called a piecewise characteristic function of Lsc(X, S ) if there exists a 1-thin cover {Uk}

m
k=1

of X, and m elements s1, ..., sm of S such that g|Uk = sk, for any 1 ≤ k ≤ m and such that
g ∈ Lsc(X, S ). The set of piecewise characteristic functions of Lsc(X, S ) will be denoted by
χ(X, S ).
If moreover g ≪ f for some f ∈ Lsc(X, S ), we say g is an piecewise characteristic function
for f . The set of piecewise characteristic functions of Lsc(X, S ) for f will be denoted by
χ f (X, S ).
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6.1.6. When clear, we will omit X and S in the notation χ(X, S ). Also, this definition has been
adapted from [3, Definition 2.4 - Definition 5.9] to fit our setting, but one can check that the
following proposition still applies.

Proposition 6.1.7. [3, Proposition 5.13 - Proposition 5.14]
(i) χ f is upward-directed. That is, for any g1, g2 in χ f , there exists g ∈ χ f such that g1, g2 ≪ g.
(ii) For any f ∈ Lsc(X, S ), we have f = sup{g, g ∈ χ f }. Actually, one can find a≪-increasing
sequence (gl)l in χ f such that f = sup

l∈N
gl.

6.1.8. We will now focus on the context we will be working on: the interval and the circle. So
from now on, X is either the circle or the interval.
In fact, we mention that it might be possible to generalize the following to any topological
space X that admits 1-thin covers of some size. Also, we conjecture that any connected
compact (Hausdorff) metric space X of covering dimension 1 admits 1-thin covers of some
size, or equivalently, of any size.
Let us now construct the canonical 1-thin covers of the circle and the interval, of any size:

6.1.9. Let X := [0, 1]. Take an equidistant partition of the interval x0 = 0, x1, ..., xm−1, xm = 1,
that is, xk := k/m. Consider U1 := [0, x1[, Um :=]xm, 1] and for any 2 ≤ k ≤ m − 1,
Uk :=]xk−1, xk[. Then, {Uk}

m
k=1 is a 1-thin cover of [0, 1] of size 1/m.

Let X := T. Take an equidistant partition of the circle x0 = 1, x1, ..., xm−1, xm = x0 start-
ing at 1. That is, xk := e2ikπ/m. Consider Uk :=]xk−1, xk[.. Then {Uk}

m
k=1 is a 1-thin cover of T

of size 1/m. Observe that any 1-thin cover of T of size 1/m is of this form. In fact, they are
entirely determined by their initial point x0.

The explicit 1-thin covers constructed above will be referred to as the canonical 1-thin covers
of X of size 1/m.

Definition 6.1.10. Let X be either the circle or the interval and let S be a countably-based Cu-
semigroup. Let g ∈ Lsc(X, S ) such that g ≪ ∞. We say that g is an n-piecewise characteristic
function of Lsc(X, S ) if there exist a size n ∈ N and 3n elements s1, ..., s3n of S such that
g|Uk = sk for any 1 ≤ k ≤ 3n, where {Uk}

3n

k=1 is the canonical 1-thin cover of X of size 1/3n.
The set of n-piecewise characteristic functions of Lsc(X, S ) will be denoted by χn(X, S ).
If moreover g ≪ f for some f ∈ Lsc(X, S ), we say g is an n-piecewise characteristic function
for f . The set of n-piecewise characteristic functions of Lsc(X, S ) for f will be denoted by
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χn, f (X, S ).
Finally, in the case that S = N, we define Γn(X) (or Γn when the context is clear) as the finite
subset of χn(X,N) consisting of n-piecewise characteristic functions taking values in {0, 1}.

Proposition 6.1.11. Let X be either the circle or the interval and let S be a countably-based
Cu-semigroup.
(i) For any n ∈ N, we have χn(X, S ) ⊂ χ(X, S ), (respectively, χn, f ⊂ χ f ).
(ii) Whenever n < m, we have χn(X, S ) ⊂ χm(X, S ) (respectively χn, f ⊂ χm, f ). In particular,
any n-piecewise characteristic function is also an (n + 1)-piecewise characteristic function.
(iii) For any two g, g′ ∈ χn, we have g + g′ ∈ χn.

Proof. (i) is clear from the definitions.
(ii) Let n < m ∈ N and let U := {Uk}

3n

1 ,W := {Wi}
3m

1 be the canonical 1-thin covers of X of
size 1/3n, 1/3m respectively. Let g ∈ χn. Observe that for any 1 ≤ k ≤ 3n, we can find 3m−n

open sets Wi,k ofW such that Wi,k ⊆ Uk and such that {Wi,k}
3m−n

i=1 is a 1-thin cover of Uk of size
1/3m−n. Plus, we know that there exists s1, ..., s3n ∈ S such that g|Uk = sk for any k ∈ {1, ..., 3n}

and g ∈ Lsc(X, S ). Now define h : X −→ S as follows:
(1) For any 1 ≤ k ≤ 3n, put h|W1,k = h|W3,k = h|W2,k

= sk.

(2) For any x ∈ X \ (
3n

∪
k=1

Uk), put h(x) = g(x).
By construction, we have h ∈ χm and also that g = h. Thus χn ⊆ χm.
(iii) Let g, g′ ∈ χn. We know that there exist s1, ..., s3n ∈ S (respectively s′1, ..., s

′
3n ∈ S ) such

that g|Uk = sk and g ∈ Lsc(X, S ) (similarly for h and s′1, ..., s
′
3n). Then (g + g′)|Uk = sk + s′k

and g + g′ ∈ Lsc(X, S ) since Lsc(X, S ) is closed under point-wise addition. Finally, since
g, g′ ≪ ∞, we also have g + g′ ≪ ∞. So g + g′ ∈ χn, which ends the proof. □

Corollary 6.1.12. Let X be either the circle or the interval and let S be a countably-based
Cu-semigroup. It follows that χn and

⋃
n∈N

χn are PoM.

Proof. Using Proposition 6.1.11 (iii), we know that each χn is stable under addition and since
addition and order are compatible in Lsc(X, S ), a fortiori they are compatible in χn. It follows
that χn is a PoM. Now take two elements g, g′ ∈

⋃
n∈N

χn. Then there exists l, l′ such that g ∈ χl

and g′ ∈ χl′ . From Proposition 6.1.11 (ii), we know that in fact both belong to a common χn.
Indeed we can take any n ≥ max(l, l′). We conclude that g + g′ ∈ χn and again addition and
order are compatible. □

6.1.13. Notations: Let X be a compact metric space of covering dimension 1 and consider
the Cu-semigroup Lsc(X,N). Observe that the open sets of X, that we write O(X) (see Corol-
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lary 4.3.5), are in canonical bijection with {1U}U⊆X. So we might interchangeably use one
object or the other. In fact, we have 1U ≤ 1V if and only if U ⊆ V . We sometimes write
U ≤ V . Also, 1U ≪ 1V if and only if there exists a compact K of X such that U ⊆ K ⊆ V . We
sometimes write U ≪ V .

Lemma 6.1.14. Let X be a compact metric space of covering dimension 1 and consider the
Cu-semigroup Lsc(X,N). Any f ∈ Lsc(X,N) can be uniquely described by a ⊆-decreasing

sequence of open sets in X. Indeed, f =
∞∑

n=0
1Un , where Un := f −1(]n;+∞]).

For any f , g ∈ Lsc(X,N), write (Un)n and (Vn)n the decreasing sequences of open sets that

uniquely determine f and g. That is, f =
∞∑

n=0
1Un and g =

∞∑
n=0

1Vn . Then:

(i) f ≤ g if and only if Un ≤ Vn for any n ∈ N.
(ii) If moreover f ≪ ∞, then f ≪ g if and only if Un ≪ Vn for any n ∈ N.
We refer to both the decreasing sequence (Un)n that uniquely determine an element f ∈

Lsc(X,N) and the countable sum
∞∑

n=0
1Un as the canonical decomposition of f .

Proof. From the lower semicontinuity of f , we know that Un := f −1(]n;+∞]) is an open set of

X. Clearly, (Un)n is a decreasing sequence in O(X) and f =
∞∑

n=0
1Un . Now let f , g ∈ Lsc(X,N)

and (Un)n, (Vn)n be their respective decreasing sequences.
(i) If Un ≤ Vn for any n ∈ N, then by the Cuntz axioms (O3) and (O4), we deduce that
f ≤ g. Conversely, if f ≤ g, then for any t ∈ X, we have f (t) ≤ g(t). Observe that in fact,
f (t) = #{n : t ∈ Un}, hence we deduce that Un ≤ Vn for any n ∈ N.
It follows that the decreasing sequence of open sets that determines f (respectively g) is
unique.
(ii) If Un ≪ Vn for any n ∈ N, then by the Cuntz axioms (O3) and (O4), we deduce that
f ≪ g. Conversely, if f ≪ g, then for any n ∈ N, using (O2), take a ≪-increasing sequence

(Vn,i)i∈N whose supremum is Vn. It follows (from what we have just proved) that (
∞∑

n=0
1Vn,i)i is

a ≪-increasing sequence whose supremum is g. Hence, we can find some i ∈ N such that

f ≤
∞∑

n=0
1Vn,i . That is, using (i), Un ≤ Vn,i ≪ Vn, for all n ∈ N, which ends the proof. □

Lemma 6.1.15. Let X be the circle or the interval and consider the Cu-semigroup Lsc(X,N).
Let l ∈ N. Then:
(i) Let g ∈ χl. Then, its canonical decomposition

∞∑
n=0

1Vn is a finite sum of elements of Γl.

(ii) Let g, h ∈ Γl. Then the canonical decomposition of g + h ∈ χl is g + h = 1supp g∩supp h +

1supp g∪supp h. A fortiori, g + h ∈ Γn if and only if supp g ∩ supp h = ∅.

p. 107



6.1. Piecewise characteristic functions

(iii) Let n < m. For any two g, g′′ ∈ χn such that g′′ ≪ g, we can find g′ ∈ χm such that
g′′ ≪ g′ ≪ g in χm.

Proof. Consider {Uk}
3l

k=1 the canonical 1-thin cover of X of size 1/3l.
(i) Let g ∈ χl. Since g ≪ ∞, we know that g(t) ≪ ∞ for any t ∈ X. Thus, there exists
n ∈ N such that g(t) ≤ n for any t ∈ N. We recall that Vn := g−1(]n;+∞]). We deduce that
Vn+1 = Vm = ∅ for any m ≥ n + 1. That is, the canonical decomposition of g is a finite sum.
Furthermore, since g is constant on Uk, then so is 1Vi , for any i ≤ n. That is, 1Vi is an element
of Γl, for any i ≤ n and we obtain (i).
(ii) For any g, h ∈ Lsc(X, {0, 1}), we have that g + h ∈ Lsc(X, {0, 2}). Moreover, the canonical
decomposition of g + h is 1supp g∩supp h + 1supp g∪supp h. Now consider g, h ∈ Γl. By (i), we know
that 1supp g∪supp h, 1supp g∩supp h ∈ Γn, from which we deduce (ii).
(iii) Let n ∈ N and let U := {Uk}

3n

1 be the canonical 1-thin cover of X of size 1/3n. Let
g, g′′ ∈ χn such that g′′ ≪ g. From (i), we know that both of their canonical decomposition
are finite sums of elements of Γn. Plus, by Lemma 6.1.14 (iii), we know that g′′ ≪ g if and
only if 1V′′k

≪ 1Vk in Γn, for any k, where
∑
k

1Vk ,
∑
k

1V′′k
are the canonical decompositions of

g, g′′ respectively. So without loss of generality, we suppose that g, g′′ ∈ Γn.
Write V ′′ := supp g′′ and V := supp g. Both V,V ′′ have a finite number of (open) connected
components. First, suppose that V ′′,V are open connected sets. We know that V ′′ ≪ V and

also that g′′, g ∈ Γn. Thus, we have V := Ur ∪ (
s−1⋃

k=r+1
Uk) ∪ Us, V ′′ := Ur′′ ∪ (

s′′−1⋃
k=r′′+1

Uk) ∪ Us′′ ,

for some r′ ≤ r ≤ s ≤ s′. Since V ≪ V ′, either V = V ′ = X or else r′ < r ≤ s < s′. The first
case being trivial, we suppose now that r′ < r ≤ s < s′.
Now let m ∈ N such that n < m and let W := {Wi}

3m

1 be the canonical 1-thin cover of X of
size 1/3m. Observe that for any 1 ≤ k ≤ 3n, we can find 3m−n open sets Wi,k ofW such that
Wi,k ⊆ Uk and such that {Wi,k}

3m−n

i=1 is a 1-thin cover of Uk of size 1/3m−n. Now, define g′ := 1V′ ,
where V ′ := W3m−n,r′′−1 ∪ V ′′ ∪W1,s′′+1. By construction, g′ ∈ χm and g′′ ≪ g′ ≪ g.
Finally, as mentioned above, both V,V ′′ have a finite number of (open) connected components
so it is easy to check that the result follows. □

Remark 6.1.16. We will often say that {1U}U∈O(X) generates Lsc(X,N). Abusing the language,
we also say that Γn generates χn. We will now see that

⋃
n∈N

χn(X,N) is a (countable) basis for

Lsc(X,N) in the sense of Definition 1.3.8.

Lemma 6.1.17. Let X be the circle or the interval and let f ∈ Lsc(X,N). For any g ∈ χ f (X,N)
there exists h ∈

⋃
n∈N

χn, f (X,N) such that g ≪ h.
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Proof. Let f ∈ Lsc(X,N). First, observe that for any g ∈ Lsc(X,N) such that g ≪ f , we can
find f ′ ∈ Lsc(X,N) such that g ≪ f ′ ≪ f ≤ ∞. So without loss of generality, we can suppose
that f ≪ ∞. Equivalently, the canonical decomposition of f is a finite sum. Let us show the
statement for f := 1U for some U open set of X and the result follows using Cuntz axiom
(O3) combined with Lemma 6.1.14.
Let g ∈ χ f and write V := supp g. We know that there exists a 1-thin cover {Vk}

m
k=1 of X such

that g is constant on every Vk. Thus V has a finite number of connected components. As in
the proof of Lemma 6.1.15, we first suppose that V is a connected open set and we repeat the
process to obtain the result.
Since g ≪ f , we know that V ≪ U and that g|V ∈ {0, 1}. In fact, we have V ⊆ V ⊆ U.
If V = U = X then it is clear. Else, we know that the inclusions are strict and hence we

can find n big enough and xr, xs ∈ X \ (
3n

∪
k=1

Uk) such that xr−1, xs ∈ U \ V , where {Uk}
3n

1 the

canonical 1-thin cover of X of size 1/3n. Now consider V ′ := Ur ∪ (
s−1⋃

k=r+1
Uk) ∪ Us. We have

that V ⊆ V ⊆ V ′ ⊆ V ′ ⊆ U. Then define h := 1V′ . By construction, we have h ∈ χ f and
V ≪ V ′ ≪ U, that is, g ≪ h ≪ f , which ends the proof. □

Corollary 6.1.18. For any f ∈ Lsc(X,N), there exists a ≪-increasing sequence (gl)l in⋃
n∈N

χn, f (X,N) such that sup
l∈N

gl = f . Equivalently,
⋃
n∈N

χn(X,N) is a countable basis of Lsc(X,N).

Proof. Combine Proposition 6.1.7 (ii) with Lemma 6.1.17 to get the result. □

Remark 6.1.19. We will often say that
⋃
n∈N

χn(X,N) is dense in Lsc(X,N)

6.2 Cu-metrics

6.2.1. We continue to assume that X is a compact metric space of covering dimension 1. Let S
and T be countably-based Cu-semigroups. Distinct (pseudo)metrics have been used in the past
to compare Cu-morphisms. We will in the first place define abstract relations on HomCu(S ,T ).
Later, now that we have described Lsc(X, S ) more specifically, we will construct a Cu-metric
on HomCu(Lsc(X,N),T ) (inspired by [41, Definition 3.1] or [64, §2.3]) to finally introduce a
new discrete Cu-semimetric.

Definition 6.2.2. Let S ,T be Cu-semigroups. Let Γ be a finite subset of S . We sometimes
write Γ ⊆

f in
S . Let α : Γ −→ T . We say that α is a Cu-partial morphism if:

(i) For any g′ ≪ g in Γ, α(g′) ≪ α(g).
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(ii) For any g1 + g2 ≪ h, α(g1) + α(g2) ≪ α(h).
(iii) If g1, g2, h1, h2 ∈ Γ satisfy g1 + g2 = h1 + h2 in S , then α(g1) + α(g2) = α(h1) + α(h2).

Remark 6.2.3. Any restriction of a Cu-morphism to a finite set of the domain, is a Cu-partial
morphism.

Definition 6.2.4. Let Γ1,Γ2 be finite subsets of S such that Γ1 ⊆ Γ2 ⊆ S . Let α, β : Γ2 −→ T
be Cu-partial morphisms.
(i) We say that α is ≈-equivalent to β on Γ1, and we write α ≈

Γ1
β, if for any g′ ≪ g in Γ1,

α(g′) ≪ β(g) and β(g′) ≪ α(g).
(ii) We say that α is ≃-equivalent to β on Γ1, and we write α ≃

Γ1
β, if for any g′ ≪ g in Γ1,

α(g′) ≤ β(g) and β(g′) ≤ α(g).

Remark 6.2.5. Obviously, if α ≈
Γ1
β then α ≃

Γ1
β, and often we will use these notions in the con-

text of α, β : S −→ T being Cu-morphisms and Γ a finite subset of S : see e.g Theorem 6.3.8.

6.2.6. Let us define a metric and, in the specific case of the interval or the circle, a semimetric
(that is, a metric that does not necessarily satisfy the triangular inequality) on HomCu(Lsc(X,N),T ).
We mention that the first one has been inspired by a similar construction from [41, Definition
3.1].

Definition 6.2.7. Let X be a compact metric space of covering dimension 1 and let T be Cu-
semigroup. For any open set U of X, and any r > 0, we define an r-open neighborhood of U,
that we write Ur := ∪

x∈U
B(x, r). Now, for any two Cu-morphisms α, β : Lsc(X,N) −→ T , we

define:

(i) dCu(α, β) := inf{r > 0 | ∀U ∈ O(X), α(1U) ≤ β(1Ur ) and β(1U) ≤ α(1Ur )}

where Ur is an r-open neighborhood of U. We refer to dCu as the Cu-metric.
If moreover X is the circle or the interval, we define:

(ii) ddCu(α, β) := inf
n∈N
{1/3n | ∀g′ ≪ g ∈ Γn(X), α(g′) ≤ β(g) and β(g′) ≤ α(g)}.

We refer to ddCu as the discrete Cu-semimetric.
For both constructions, if the infimum defined does not exist, we set the value to∞.

Remark 6.2.8. Both constructions of Definition 6.2.7 are symmetric, positive and take value
0 on the diagonal of HomCu(Lsc(X,N),T ) × HomCu(Lsc(X,N),T ). Moreover dCu satisfies the
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triangular inequality, which makes it a pseudometric. We will see below that they both satisfy
the identity of indiscernibles (that is, d(x, y) = 0 if and only if x = y). Thus dCu is actually
metric and ddCu a semimetric.

Proof. Both constructions are clearly symmetric and if α = β, then both take value 0. We fi-
nally have to check that dCu satisfies the triangle inequality. Let α, β, γ ∈ HomCu(Lsc(X,N),T ).
If dCu(α, β) = r1 and dCu(β, γ) = r2, then for any U ∈ O(X) we have α(1U) ≤ β(1Ur1

) ≤
γ(1Ur1+r2

) and that γ(1U) ≤ β(1Ur2
) ≤ α(1Ur2+r1

). Thus, dCu(α, γ) ≤ r1 + r2. □

Lemma 6.2.9. Let X be the circle or the interval. Let α, β : Lsc(X,N) −→ T be Cu-morphisms
and let n ∈ N. Then:
(i) ddCu(α, β) ≤ 1/3n if and only if α ≃

Γn
β.

(ii) If α ≃
Γm
β, then α ≈

Γn
β for any n < m.

(iii) If α ≈
Γn
β, then for any g′ ≪ g ∈ χn, we have α(g′) ≪ β(g) and β(g′) ≪ α(g).

(iv) If α ≃
Γn
β, then for any g′ ≪ g ∈ χn, we have α(g′) ≤ β(g) and β(g′) ≤ α(g).

Proof. Let α, β : Lsc(X,N) −→ T be Cu-morphisms and let n ∈ N.
(i) If α ≃

Γn
β, we exactly have for any two g′, g ∈ Γn(X) such that g′ ≪ g, then α(g′) ≤ β(g)

and β(g′) ≤ α(g), hence ddCu(α, β) ≤ 1/3n. Conversely, suppose that ddCu(α, β) ≤ 1/3n. We
trivially deduce that α ≃

Γm
β for any m < n. Now suppose that α ;

Γn

β. Then by definition of the

infimum, we conclude that ddCu(α, β) = 1/3n−1. Contradiction.
(ii) Let n < m and take g′′, g ∈ Γn such that g′′ ≪ g. By Lemma 6.1.15, we can find g′ ∈ Γm

such that g′′ ≪ g′ ≪ g in Γm. A quick computation gives us that α(g′′) ≤ β(g′) ≪ β(g) and
β(g′′) ≤ α(g′) ≪ α(g). Thus we deduce that α ≈

Γm
β.

(iii) Let g′, g ∈ χn such that g′ ≪ g. Since Γn generates χn, see Lemma 6.1.15 (i), we know
that there exists two unique ⊆-decreasing sequences (V ′n)n and (Vn)n of elements in Γn such

that g′ =
∞∑

n=0
1V′n and g =

∞∑
n=0

1Vn . Moreover, from hypothesis, we also have 1V′n ≪ 1Vn for

any n ∈ N. Now, using that α ≈
Γn
β, for any n ∈ N we deduce that α(1V′n) ≪ β(1Vn) and

β(1V′n) ≪ α(1Vn) the conclusion follows. (iv) is proved similarly. □

Proposition 6.2.10. Let X be the circle or the interval. Let α, β : Lsc(X,N) −→ T be Cu-
morphisms and let n ∈ N. Then:
(i) If dCu(α, β) ≤ 1/3n, then α ≃

Γn
β.

(ii) If α ≃
Γn
β, then dCu(α, β) ≤ 4/3n ≤ 1/3n−2.
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Proof. LetU := {Uk}
3l

1 be the canonical 1-thin cover of X of size 1/3n.
(i) Let g, g′ ∈ Γn such that g′ ≪ g. Write V := supp g,V ′ := supp g′. Both V,V ′ has a finite
number of (open) connected components. As in the proof of Lemma 6.1.15, we first suppose
that V,V ′ are a connected open sets and we repeat the process to obtain the result. Thus we

have V := Ur ∪ (
s−1⋃

k=r+1
Uk) ∪ Us,V ′ := Ur′ ∪ (

s′−1⋃
k=r′+1

Uk) ∪ Us′ for some r′ ≤ r ≤ s ≤ s′.

Since V ≪ V ′, either V = V ′ = X or else r′ < r ≤ s < s′. In both cases, we observe that
V ′ ≪ V ′1/3n ≤ V . Thus we deduce that α(g) ≤ β(g′) and β(g) ≤ α(g′).
(ii) Let U ∈ O(X) and consider f := 1U . Let us construct recursively the following g ∈ Γn:
(1) For any 1 ≤ k ≤ 3n, if Uk ∪ U , ∅, put g|Uk = 1.

(2) For any x ∈ X \ (
3n

∪
k=1

Uk), put g(x) = f (x).
Write V := supp g. From construction, g is an element of Γn such that U ⊆ V ⊆ U1/3n ⊆

V1/3n ⊆ U2/3n . Since 1V , 1V2/3n are elements of Γn such that 1V ≪ 1V1/3n , we deduce the follow-
ing by using that α ≃

Γn
β:

 α(1|U) ≤ α(1|V) ≤ β(1V1/3n ) ≤ β(1U2/3n )
β(1|U) ≤ β(1|V) ≤ α(1V1/3n ) ≤ α(1U2/3n )

which ends the proof. □

6.2.11. Conjecture: Let X be the circle or the interval. Let α, β : Lsc(X,N) −→ T be Cu-
morphisms. Then, ddCu(α, β) ≤ dCu(α, β) ≤ 3ddCu(α, β).

Corollary 6.2.12. Let X be a compact metric space of covering dimension 1. Let α, β :
Lsc(X,N) −→ T be Cu-morphisms. The following are equivalent:
(i) dCu(α, β) = 0.
(ii) ddCu(α, β) = 0. (Here we suppose X to be the circle or the interval.)
(iii) α ≃

Γn
β, for any n ∈ N.

(iii’) α ≈
Γn
β, for any n ∈ N.

(iv) α = β.
Hence dCu is a metric and ddCu is a semimetric on HomCu(Lsc(X,N),T ).

Proof. Let α, β : Lsc(X,N) −→ T be Cu-morphisms. That (iv) implies (i) trivially. Con-
versely, suppose that dCu(α, β) = 0. Let f ∈ Lsc(X,N). Since B := {1U}U∈O(X) generates
Lsc(X,N) (see Remark 6.1.16), we can suppose that f := 1U for some U ∈ O(X). Now using
(O2), we know there exists a ≪- increasing sequence (gn)n such that sup

n∈N
gn = f . A fortiori,
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gn ∈ B for any n ∈ N. Now from hypothesis, we know that α(gm) ≤ β(gn) ≤ β( f ) and
β(gm) ≤ α(gn) ≤ α( f ) for any m < n. Finally, passing to suprema, we obtain that α( f ) ≤ β( f )
and β( f ) ≤ α( f ), which gives us that (i) is equivalent to (iv).
By Lemma 6.2.9, we directly obtain (ii) is equivalent to (iii) is equivalent to (iii’) and Propo-
sition 6.2.10 exactly gives us (i) is equivalent to (ii), which ends the proof. □

6.3 Intertwinings

6.3.1. In this third section, we exhibit a theorem that is a particular case of approximate
intertwinings in the category Cu in a specific countably-based setting. It is worth mentioning
that it has been inspired from the work of Thomsen in [73, Theorem 3.4]. Let us first start with
a characterization regarding inductive systems in the category Cu and some more properties
of the n-piecewise characteristic functions:

Proposition 6.3.2. [65, Section 3],[21, Theorem 2]
Consider an inductive system (S i, σi j)i∈I in Cu. Then (S , σi∞)i∈I is the inductive limit of the

system if and only if it satisfies the two following properties:
(L1): For any s ∈ S , there exists (si)i∈I such that si ∈ S i for any i and σi(i+1)(si) ≪ si+1 for any
i ∈ I and s = sup

i∈I
σi∞(si).

(L2): Let s, t be elements in S i such that σi∞(s) ≤ σi∞(t), and s′ ≪ s. Then there exists j ≥ i
such that σi j(s′) ≪ σi j(t).

Lemma 6.3.3. Let X be the circle or the interval and consider the Cu-semigroup Lsc(X,N)
and l ∈ N. Let U ∈ O(X) and consider f := 1|U . Then Γl, f has a largest element, that we write
f≪,l. That is, f≪,l := max

g∈Γl, f
{g ≪ f }.

Proof. We explicitly build the largest element of the set Γl, f . Write {Uk}
3l

k=1 the canonical 1-
thin cover of X of size 1/3l. Recursively, construct f≪,l as follows:
(1) For any 0 ≤ k ≤ 3l, if Uk ∩ U = Uk, then put f≪,l |Uk

= 1. Else, put f≪,l |Uk
= 0.

(2) For any x ∈ X \ (
3l

∪
k=1

Uk), if there exists an open neighborhood Bx of x such that f≪,l |(Bx\{x}) =

1, then put f≪,l(x) = 1, else put f≪,l(x) = 0. By construction, f≪,l ∈ Γl, f and has the required
property. □

Corollary 6.3.4. Let X be the circle or the interval. Let f ∈ Lsc(X,N) such that f ≪ ∞ and
let (Wk)k its canonical decomposition. Let l ∈ N. Then χl, f has a largest element, that we write
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f≪,l. In fact, f≪,l := max{g ≪ f , g ∈ χl} =
∑
k

(1Wk)≪,l.

Furthermore, ( f≪,l)l∈N is a≪-increasing sequence whose supremum is f .

Proof. Let g ∈ χ f ,l. Combining Lemma 6.1.14 (iii), with Lemma 6.1.15 (i) we get that the
canonical decomposition (Vk)k of g satisfies the following: Vk ∈ Γl, f and Vk ≪ Wk for any k.
On the other hand, using Lemma 6.3.3 and Lemma 6.1.14 (ii), we deduce that g ≤

∑
k

(1Wk)≪,l.

Now, by Lemma 6.1.15, we know that we can find some h ∈ χl+1 such that f≪,l ≪ h ≪ f .
We obtain ( f≪,l)l∈N is a≪-increasing sequence. Thus, by Corollary 6.1.18, we can find a≪-
increasing sequence (gn)n in

⋃
l∈N
χl whose supremum is f . Since any gn ∈ χl for some l ∈ N,

we have gn ≤ f≪,l ≤ sup
l

f≪,l for any n ∈ N. Passing to suprema, we deduce f ≤ sup
l

f≪,l and

obviously the converse inequality holds. □

Lemma 6.3.5. Let X be the circle or the interval. Let l ∈ N. Let g, g′ ∈ Γl, and put h :=
g + g′ ∈ χl. Then for any j > l, we have g≪, j + g′

≪, j = h≪, j.
Now write V := supp g,V ′ := supp g′ and write V≪, j := supp g≪, j, (V ′)≪, j := supp g′

≪, j. Then
(V ∪ V ′)≪, j = (V≪, j ∪ (V ′)≪, j) and (V ∩ V ′)≪, j = (V≪, j ∩ (V ′)≪, j).

Proof. Let U := {Uk}
3l

1 be the canonical 1-thin cover of X of size 1/3l. Let h := g + g′,
V := supp g and V ′ := supp g′. Also write h1 := 1V∪V′ and h2 := 1V∩V′ . By Lemma 6.3.3,
we know that h = h1 + h2. Further, both V,V ′ have a finite number of (open) connected
components. As in the proof of Lemma 6.1.15, we first suppose that V,V ′ are connected open
sets and we repeat the process to obtain the result. If V ∩ V ′ = ∅ then h ∈ Γl and the result is
trivial. Else V ∩ V ′ , ∅. In this case we have:

V := Ur ∪ (
s−1⋃

k=r+1

Uk) ∪ Us V ′ := Ur′ ∪ (
s′−1⋃

k=r′+1

Uk) ∪ Us′

for some r ≤ r′ ≤ s ≤ s′.
Let j > l and and letW := {Wi}

3 j

1 be the canonical 1-thin cover of X of size 1/3 j. Observe
that for any 1 ≤ k ≤ 3l, we can find 3 j−l open sets Wi,k ofW such that Wi,k ⊆ Uk and such that
{Wi,k}

3 j−l

i=1 is a 1-thin cover of Uk of size 1/3 j−l. Now observe that:

supp(h1)≪, j = (Ur \Wr,1) ∪ (
s′−1⋃

k=r+1
Uk) ∪ (Us′ \Ws′,3 j−l)

supp(h2)≪, j = (Ur′ \Wr′,1) ∪ (
s−1⋃

k=r′+1
Uk) ∪ (Us \Ws,3 j−l)
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Moreover, since (V ∪ V ′,V ∩ V ′) is the canonical decomposition of h, by Corollary 6.3.4, we
know that h≪,n j = (h1)≪, j + (h2)≪, j. On the other, observe that:

supp(g)≪, j = (Ur \Wr,1) ∪ (
s−1⋃

k=r+1
Uk) ∪ (Us \Ws,3 j−l)

supp(g′)≪, j = (Ur′ \Wr′,1) ∪ (
s′−1⋃

k=r′+1
Uk) ∪ (Us′ \Ws′,3 j−l)

Hence we get h≪, j = g≪, j + g′
≪, j.

Now, let us write V≪, j := supp g≪, j, (V ′)≪, j := supp g′
≪, j. Observe that by Corollary 6.3.4, we

know that g≪, j + (g′)≪, j = 1V≪, j∪(V′)≪, j + 1V≪, j∩(V′)≪, j . On the other hand, we have just proved
that g≪, j + (g′)≪, j = (h1)≪, j + (h2)≪, j = 1(V∪V′)≪, j + 1(V∩V′)≪, j , which ends the proof. □

Corollary 6.3.6. Let X be the circle or the interval and consider the Cu-semigroup Lsc(X,N).
Let l ∈ N and let g, g′ ∈ χl.
(i) For any j > l, we have g≪, j + g′

≪, j = (g + g′)≪, j.
(ii) Suppose g′ ≪ g, (respectively g′ ≤ g). Then for any j > l, we have g′

≪, j ≪ g≪, j,
(respectively g′

≪, j ≤ g≪, j for any j ∈ N).
(iii) Let (gk)k, (hk)k be≪-increasing sequences in

⋃
l∈N
χl such that g := sup

k∈N
(gk) = sup

k∈N
(hk). Let

j ∈ N. Then, ((gk)≪, j)k∈N, ((hk)≪, j)k∈N are increasing sequences in S i and we have sup
k∈N

(gk)≪, j =

sup
k∈N

(hk)≪, j. In particular, if g ≪ ∞, then sup
k∈N

(gk)≪, j = g≪, j.

Proof. Since g′ ∈ χl is a sum of elements in Γl, we can suppose without loss of generality that
g′ ∈ Γl. Now let (Vn)n be the canonical decomposition of g and let V ′ := supp g′. we have
g =
∑
n

1Vn and g′ := 1V′ . Observe that g + g′ = 1V1∪V′ +
∑
n

1Vn∪(Vn−1∩V′) (respectively, g≪, j, g′≪, j
and their canonical decompositions). Now that we know the canonical decomposition of g+g′

and g≪, j + g′
≪, j, using Corollary 6.3.4 and Lemma 6.3.5 (and its notations), we get that:

g≪, j + g′≪, j =
∑

n

(1Vn)≪, j + (1V′)≪, j

= 1(V1)≪, j∪(V′)≪, j +
∑
n≥2

1(Vn)≪, j∪((Vn−1)≪, j∩(V′)≪, j)

= 1(V1∪V′)≪, j +
∑
n≥2

1(Vn)≪, j∪(Vn−1∩V′)≪, j
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= (1(V1∪V′))≪, j +
∑
n≥2

1(Vn∪(Vn−1∩V′))≪, j

= (1(V1∪V′))≪, j +
∑
n≥2

1(Vn∪(Vn−1∩V′))≪, j

and hence g≪, j + g′
≪, j = (g + g′)≪, j.

(ii) Now assume that g′ ≪ g. Let j > l Using Lemma 6.1.15, we know that we can find some
h ∈ χ j such that g′ ≪ h ≪ g. From this, we deduce that (g′)≪, j ≪ g≪, j. If we have g′ ≤ g,
then since g′

≪, j ≪ g′ ≤ g, the result follows from maximality of g′
≪, j for any j ∈ N.

(iii) Let (gk)k, (hk)k be≪-increasing sequences in
⋃
l∈N
χl such that g := sup

k∈N
(gk) = sup

k∈N
(hk). Let

j ∈ N. We know that (gk)≪, j ≪ gk ≪ gk+1. Hence, (gk)≪, j ∈ χ j,gk+1 . By Corollary 6.3.4
we know that χ j,gk+1 has a largest element, which by definition is (gk+1)≪, j. We finally deduce
that (gk)≪, j ≤ (gk+1)≪, j. A similar argument gives us (hk)≪, j ≤ (hk+1)≪, j and we deduce that
both ((gk)≪, j)k, ((hk)≪, j)k are increasing sequences in χ j. Thus, they have suprema that we
respectively denote by g̃ j, h̃ j.
Since (gk)k, (hk)k are ≪-increasing and sup

k∈N
(gk) = sup

k∈N
(hk), we know that for any k ∈ N, there

exists k′ ∈ N such that gk ≪ hk′ and hk ≪ gk′ . We deduce that for any k ∈ N, there exists a
k′ ∈ N such that (gk)≪, j ≤ (hk′)≪, j and (hk)≪, j ≤ (gk′)≪, j. Passing to suprema, we conclude that
g̃ j = h̃ j.
Finally, if g ≪ ∞, then ((gk)≪, j)k∈N is in fact an increasing sequence in χ j,g, which happens to
have g≪, j as largest element. Thus we get that g̃ j ≤ g≪, j. Conversely, since g≪, j ≪ g, we know
that there exists some k ∈ N such that g≪, j ≤ gk ≪ gk+1, which gives us that g≪, j ≤ (gk+1)≪, j.
We deduce that g≪, j ≤ g̃ j, hence g≪, j = g̃ j and the result follows. □

Lemma 6.3.7. Let S ,T be Cu-semigroups. Suppose that S has a countable basis B such
that B is also a PoM. For any PoM-morphism α : B −→ T, then there exists a generalized
Cu-morphism α̃ : S −→ T (that is, a PoM-morphism that respects suprema of increasing
sequences), such that α̃|B = α. If moreover α preserves≪, then α̃ is a Cu-morphism.
For notational purposes, we usually write α instead of α̃.

Proof. Let α : B −→ T be a PoM-morphism. We are going to extend α to S : Let (bn)n, (cn)n

be two ≪-increasing sequences in B such that they have the same supremum in S . That is,
sup

n
bn = sup

n
cn in S . First, observe that α(bn)n, α(cn)n are increasing sequences in T and

hence they have a supremum. Also, since (bn)n is a≪-increasing sequence, it follows that for
any n ∈ N, there exists some m ≥ n such that bn ≤ cm. Besides α is a PoM-morphism, so
α(bn) ≤ α(cm) ≤ sup

n
α(cn), for all n ∈ N. It follows that sup

n
α(bn) ≤ sup

n
α(cn). By symmetry,
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we get the converse inequality to conclude: sup
n
α(bn) = sup

n
α(cn) for any two ≪-increasing

sequences of B that have the same supremum in S .
Now let s ∈ S . Since B is a (countable) basis of S , then there exists a≪-increasing sequence
(bn)n in B whose supremum is s. We have just proved that sup

n
α(bn) does not depend on the

sequence (bn)n chosen. Thus we define:

α : S −→ T
s 7−→ sup

n
α(bn)

Let us check that this is a generalized Cu-morphism. Let s, t ∈ S , and consider two ≪-
increasing sequences (bn)n, (cn)n in B such that s = sup

n
bn, t = sup

n
cn.

Suppose that s ≤ t. We have sup
n

bn ≤ sup
n

cn and we have proved just above that this implies

that sup
n
α(bn) ≤ sup

n
α(cn). That is, α(s) ≤ α(t).

Now put x := s + t ∈ S . Then (bn + cn)n is a sequence of B, since B is a PoM, and obvisouly,
it is ≪-increasing towards x. Hence α(x) = sup

n
α(bn + cn) = sup

n
(α(bn) + α(cn)). Further,

we know that sup
n

(α(bn), sup
n

(α(cn) exist in T . In fact, they are respectively equal to α(s), α(t).

Thus we deduce that α(x) = α(s)+α(t) and that α : S −→ T is a well-defined PoM-morphism.
Let (sn)n be an increasing sequence in S . Then (α(sn))n is an increasing sequence in T and
hence it has a supremum. On the one hand, we have α(sn) ≤ α(s) for any n ∈ N, from
which we obtain sup

n
(α(sn)) ≤ α(s). On the other hand, we know we can find a≪-increasing

sequence (bn)n in B such that s = sup
n

bn and that for any bn, there exists m such that bn ≤ sm,

which gives us α(bn) ≤ α(sm) ≤ sup
n

(α(sn)) for any n ∈ N. Passing to suprema, we deduce

the converse inequality: α(s) = sup
n

(α(bn)) ≤ sup
n

(α(sn)). We conclude that α : S −→ T is a

well-defined generalized Cu-morphism.
Finally, suppose that α : B −→ T preserves ≪. Then for any two s, t ∈ S such that s ≪ t,
consider any≪-increasing sequence (cn)n in B whose supremum is t. Then we can find some
m ∈ N such that s ≪ cm ≪ cm+1 ≪ t. We obtain: α(s) ≤ α(cm) ≪ α(cm+1) ≤ α(t), which gives
us that α : S −→ T is a Cu-morphism. □

Theorem 6.3.8. Let X be the circle or the interval. For any i ∈ N, write S i = Ti = Lsc(X,N).
Suppose there are Cu-morphisms σii+1, τii+1 : Lsc(X,N) −→ Lsc(X,N) that define two induc-
tive sequences (S i, σi j)i∈N and (Ti, τi j)i∈N in Cu. Let S and T be their respective inductive
limits. Suppose there exists a strictly increasing sequence (ni)i in N such that:
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(i) σii+1 ≈
Γni

τii+1, for any i ∈ N.

(ii) For any i ≤ j and any l ∈ N, we have σi j(χl), τi j(χl) ⊆ χl, where σi j := σ j−1 j ◦ ... ◦ σii+1

and τi j := τ j−1 j ◦ ... ◦ τii+1.
Then, S ≃ T as Cu-semigroups.

Proof. The aim is to construct generalized Cu-morphisms γi : S i −→ T , for any i ∈ N,
such that γi = γ j ◦ σi j for any i ≤ j, to obtain a generalized Cu-morphism γ : S −→ T .
A similar construction will give us another generalized Cu-morphism δ : T −→ S . Finally,
we will conclude by showing that γ and δ are in fact Cu-isomorphisms inverses of one another.

Fix i ∈ N. We will first define morphisms γi,nl : χnl ⊂ S i −→ T , for any l ∈ N as fol-
lows:
Let l ∈ N and let g ∈ χnl . For any j > i, nl we define:

α j : S i
σi j+1 // S j+1

id
��

T j+1 τ j+1∞
// T

We claim that (α j(g≪,n j)) j>i,nl is a ≪ increasing sequence in T . Indeed, by Corollary 6.3.4
and because (ni)i is a strictly increasing sequence, we know that (g≪,n j) j∈N is a ≪-increasing
sequence in S i whose supremum is g. We deduce that σi j+1(g≪,n j) ≪ σi j+1(g≪,n j+1) in S j+1 for
any j > i, nl.
Moreover, by (ii), we know that σi j+1(g≪,n j), σi j+1(g≪,n j+1) ∈ χn j+1 . Now using Lemma 6.2.9
(iii), combined with (i), we get that τ j+1 j+2 ◦ σi j+1(g≪,n j) ≪ σ j+1 j+2 ◦ σi j+1(g≪,n j+1) and hence
τ j+2∞◦τ j+1 j+2◦σi j+1(g≪,n j) ≪ τ j+2∞◦σ j+1 j+2◦σi j+1(g≪,n j+1). That is, α j(g≪,n j) ≪ α j+1(g≪,n j+1),
for any j > i, nl. Thus, (α j(g≪,n j)) j>i,nl is a≪ increasing sequence in T and it has a supremum.
Let us now define:

γi,nl : χnl ⊆ S i −→ T
g 7−→ sup

j>i,nl

α j(g≪,n j)

Let us check that this is a well-defined PoM-morphism:
(1) From Corollary 6.3.6, we deduce that for any g, g′, h, h′ ∈ χnl such that g+g′ = h+h′ := f ,
we have g≪,n j + g′≪,n j

= h≪,n j + (h′)≪,n j = f≪,n j . So we can naturally consider γi,nl(g + g′) :=
γi,nl(g) + γi,nl(g

′) for any two g, g′ ∈ χnl .
(2) Let g′, g ∈ χnl be such that g′ ≤ g. Let j > i, nl. From Corollary 6.3.6 (ii), we know that
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g′≪,n j
≤ g≪,n j . Hence α j(g′≪,n j

) ≤ α j(g≪,n j) and we conclude that γi,nl(g
′) ≤ γi,nl(g).

For any l ∈ N, we have constructed a PoM-morphism γi,nl : χnl ⊆ S i −→ T . Clearly, we
have (γi,n′l

)|Γnl
= γi,nl for any l < l′. Thus we define the following PoM-morphism:

γi :
⋃
l∈N
χnl ⊂ S i −→ T

g 7−→ γi,ng(g)

where ng := min
l∈N
{nl : g ∈ χnl}.

Finally, by (iii), observe that
⋃
l∈N
χl =

⋃
l∈N
χnl . Thus, from Corollary 6.1.18, we deduce that⋃

l∈N
χnl is a (countable) basis of S i. Now, combining this with the fact that

⋃
l∈N
χnl is a PoM (see

Section 6.1) and that γi is a PoM-morphism, we can use Lemma 6.3.7 to extend this map to
S i to obtain a generalized Cu-morphism γi : S i −→ T . We recall that, for f ∈ S i, we have
γi( f ) := sup

n
γi(gn), where (gn)n is any≪-increasing sequence of

⋃
l∈N
χnl whose supremum is f .

To conclude the first step, we have defined generalized Cu-morphisms γi : S i −→ T for any
i ∈ N. Furthermore, using hypothesis (ii), the following diagram is clearly commutative by
construction:

S i
σi j //

γi ��

S j

γ j��
T

Let us now use these γi to build a generalized Cu-morphism γ : S −→ T . We define:

γ : S −→ T
s 7−→ sup

i
(γi(si))

where (si)i∈N is any sequence as in (L1).
Let s ∈ S . Consider two sequences (si)i∈N, (s′i)i∈N as in (L1) of Proposition 6.3.2. First observe
that for any i ∈ N, we have γi(si) = γi+1(σii+1(si)) ≤ γi+1(si+1), respectively γi(s′i) ≤ γi+1(s′i+1).
It follows that (γi(si))i, (γi(s′i))i are increasing sequences in T .
On the other hand, we know that (σi∞(si))i, (σi∞(s′i))i are ≪-increasing sequences whose
supremum is s. Let i ∈ N. It is easy to see that there exists j ∈ N such that σi+1∞(si+1) ≪
σ j∞(s′j). By (L2) of Proposition 6.3.2, there exists a finite stage k > i, j such thatσ jk(σi j(si)) ≪
σ jk(s′j). Since γk : S k −→ T is a generalized Cu-morphism, we obtain γk(σ jk(σi j(si))) ≤
γk(σ jk(s′j)), which gives us by the commutative diagram above, γi(si) ≤ γ j(s′j).
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Thus, we obtain that γi(si) ≤ γ j(s′j) ≤ sup
l

(γl(s′l)) for any i ∈ N. Passing to suprema, we

deduce sup
l

(γl(sl)) ≤ sup
l

(γl(s′l)). By a similar argument, the converse inequality holds and we

finally conclude:
For any s ∈ S and any sequence (si)i∈N as in (L1) of Proposition 6.3.2, then sup

i
(γi(si)) does

not depend on the sequence chosen. By a similar argument as in Lemma 6.3.7, γ : S −→ T is
a generalized Cu-morphism such that the following diagram is commutative:

S i
σi∞ //

γi ��

S

γ
��

T

for any i ∈ N. We construct in the exact same way, a collection of generalized Cu-morphisms
{δi}i∈N and δ : T −→ S such that the following diagram is commutative:

Ti
τi∞ //

δi ��

T

δ��
S

The last step is then to check that γ and δ are inverses of one another. We are going to prove
that for any i ∈ N and any s ∈ S i, we have δ ◦ γi(s) = σi∞(s). Since

⋃
l∈N
χnl is dense in S i and

since σi∞, δ, γi are morphisms that preserve suprema of increasing sequences, it is enough to
show the said property for some g ∈

⋃
l∈N
χnl .

Fix i, l ∈ N and let g ∈ χnl . The aim is to prove that δ◦γi(g) ≤ σi∞(g) and that δ◦γi(g) ≥ σi∞(g),
which will end the proof as explained above. To begin, we observe the following:

δ ◦ γi(g) = δ( sup
j>i,ng

τ j+1∞ ◦ σi j+1(g≪,n j))

= sup
j>i,ng

(δ ◦ τ j+1∞ ◦ σi j+1(g≪,n j))

= sup
j>i,ng

δ j+1(σi j+1(g≪,n j))

δ ◦ γi(g) = sup
j>i,ng

sup
j′> j+1,n j

(σ j′+1∞ ◦ τ j+1 j′+1)((σi j+1(g≪,n j))≪,n j′ ).

We first prove that δ ◦ γi(g) ≤ σi∞(g):
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By Corollary 6.3.4, we know that (g≪,n j) j>i,ng is a≪-increasing sequence whose supremum is
g. By the same argument, we have that ((σi j+1(g≪,n j))≪,n j′ ) j′> j+1,n j is a≪-increasing sequence
whose supremum is σi j+1(g≪,n j). Fix j > i, ng, there exists j′ > j + 1, n j such that:

(σi j+1(g≪,n j))≪,n j′ ≪ σi j+1(g≪,n j) ≪ σi j+1(g≪,n j+1) in S j+1.

Furthermore, by hypothesis (ii), observe that σi j+1(g≪,n j) ≪ σi j+1(g≪,n j+1) are in χn j+1 ⊆ S j+1.
Using that τ j+1 j+2 is a Cu-morphism on the first comparison and hypothesis (i) on the second
comparison, we deduce the following:

τ j+1 j+2((σi j+1(g≪,n j))≪,n j′ ) ≪ τ j+1 j+2 ◦ σi j+1(g≪,n j) ≪ σ j+1 j+2 ◦ σi j+1(g≪,n j+1) in S j+2.

Again, by hypothesis (ii), observe that τ j+1 j+2 ◦ σi j+1(g≪,n j), σ j+1 j+2 ◦ σi j+1(g≪,n j+1) ∈ χn j+2 ⊆

S n j+2 = Tn j+2 . Hence, hypothesis (i) still applies here, and repeating this process we obtain for
any j′ > j + 1, n j:

τ j+1 j′+1((σi j+1(g≪,n j))≪,n j′ ) ≪ τ j+1 j′+1(σi j+1(g≪,n j)) ≪ σ j+1 j′+1(σi j+1(g≪,n j+1)) in S j′+1.

Composing with σ j′+1∞, we obtain for any j′ > j + 1, n j:

σ j′+1∞ ◦ τ j+1 j′+1((σi j+1(g≪,n j))≪,n j′ ) ≪ σ j′+1∞ ◦ σ j+1 j′+1(σi j+1(g≪,n j+1)) in S .

Now, taking suprema over j′ first and then over j, we conclude that δ ◦ γi(g) ≤ σi∞(g).

Now, let us prove that σi∞(g) ≤ δ ◦ γi(g):
By Corollary 6.3.4, we know that (g≪,n j) j>i,ng is a≪-increasing sequence whose supremum is
g. By the same argument, we have that ((σi j+1(g≪,n j))≪,n j′ ) j′> j+1,n j is a≪-increasing sequence
whose supremum is σi j+1(g≪,n j). Fix j be arbitrary big. In particular j > i + 2, ng + 2. There
exists j′ > j + 1, n j such that:

σi j+1(g≪,n j−2) ≪ σi j+1(g≪,n j−1) ≪ (σi j+1(g≪,n j))≪,n j′ in S j+1.

Furthermore, by hypothesis (ii), observe that σi j+1(g≪,n j−2) ≪ σi j+1(g≪,n j−1) in χn j+1 ⊆ S j+1.
Using hypothesis (i) on the first comparison and that τ j+1 j+2 is a Cu-morphism on the second
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comparison, we deduce the following:

σ j+1 j+2 ◦ σi j+1(g≪,n j−2) ≪ τ j+1 j+2 ◦ σi j+1(g≪,n j−1) ≪ τ j+1 j+2((σi j+1(g≪,n j))≪,n j′ ) in S j+2.

Again, by hypothesis (ii), observe that σ j+1 j+2 ◦ σi j+1(g≪,n j−2), τ j+1 j+2 ◦ σi j+1(g≪,n j−1) ∈ χn j+2 ⊆

S n j+2 = Tn j+2 . Hence, hypothesis (i) still applies here, and repeating this process we obtain for
any j′ ≥ k′ > j + 1, n j:

σ j+1 j′+1 ◦ σi j+1(g≪,n j−2) ≪ τ j+1 j′+1 ◦ σi j+1(g≪,n j−1) ≪ τ j+1 j′+1((σi j+1(g≪,n j))≪,n j′ ) in S j′+1.

Composing with σ j′+1∞, we obtain for any j′ ≥ k′ > j + 1, n j:

σ j′+1∞ ◦ σ j+1 j′+1 ◦ σi j+1(g≪,n j−2) ≪ σ j′+1∞ ◦ τ j+1 j′+1((σi j+1(g≪,n j))≪,n j′ ) in S .

Now, taking suprema over j′ first and then over j, we conclude that σi∞(g) ≤ δ ◦ γi(g).

Putting everything together, we conclude that for any i ∈ N and any s ∈ S i, we have
δ ◦ γi(s) = σi∞(s). It follows that δ ◦ γ = idS . Symmetrically, we have γ ◦ δ = idT . Now,
since any PoM-isomorphism between two Cu-semigroups is in fact a Cu-isomorphism (see
Lemma 3.1.14), we conclude S ≃ T as Cu-semigroups through γ and δ = γ−1. □

6.4 The Evans-Kishimoto construction

6.4.1. In this last section, we study the Cu-semigroup of a specific construction of NCCW 1
algebras: the Evans-Kishimoto folding interval algebras. We refer the reader to [31] for
more details. We point out that these C∗-algebras are a generalization of Elliott-Thomsen
dimension-drop interval algebras (see Paragraph 5.2.2) even though they were considered be-
forehand.
By Proposition 4.4.4, we know how to compute the Cu-semigroup of such a construction. In
fact, we will check that we can picture it as a Cu-subsemigroup of Lsc([0, 1],N) and adapt all
the above to these Cu-semigroups. Furthermore, we will generalize Theorem 6.3.8 to induc-
tive systems of finite sums of both Lsc and Cu-semigroups obtained from the Evans-Kishimoto
construction.

6.4.2. Evans-Kishimoto folding interval algebras:
These C∗-algebras were first considered in [31, Lemma 2.1 (2.14)] and they are constructed
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as follows: Let q be a natural number and denote the full matrix algebra of size q by Mq. Let
e and f := (1Mq − e) be two (non-trivial) projections in Mq. For any n ∈ N, we consider the
following pullback:

In
q,e

π1 //

π2
��

C([0, 1],
n
⊗
1

Mq)

(ev0,ev1)
��

(
n−1
⊗
1

Mq) ⊕ (
n−1
⊗
1

Mq)
(in0,i

n
1)
// (

n
⊗
1

Mq) ⊕ (
n
⊗
1

Mq)

where in
0, i

n
1 : (

n−1
⊗
1

Mq)⊕ (
n−1
⊗
1

Mq) −→
n
⊗
1

Mq are injections that are constructed in [31, Lemma 2.1
(2.11)/(2.12)].

In other words, In
q,e := A((

n−1
⊗
1

Mq) ⊕ (
n−1
⊗
1

Mq),
n
⊗
1

Mq, in
0, i

n
1). For n = 1, observe that I1

q,1Mq
= Iq

is the Elliott-Thomsen dimension-drop interval algebra (see Paragraph 5.2.2). By Proposi-
tion 4.4.4, we know that:

K0(In
q,e) ≃ Z Cu(In

q,e) ≃ { f ∈ Lsc([0, 1],N) | f (0), f (1) ∈ qN}
K1(In

q,e) ≃ Z/qZ ≃ { f ∈ Lsc([0, 1], 1
qnN) | f (0), f (1) ∈ q

qnN}

First, we observe that the projection e does not play any role at the level of positive elements,
so we usually omit it in notations when dealing with the Cu-semigroup. Now, we have seen
that we can picture Cu(In

q) ≃ { f ∈ Lsc([0, 1], 1
qnN) | f (0), f (1) ∈ q

qnN} as a Cu-subsemigroup
of Lsc([0, 1], 1

qnN).
The next step is to find adequate substitutes of Γm, χm for Cu(In

q) that will allow us to adapt
all the results of the previous sections to Cu(In

q).

Definition 6.4.3. Let q, n be fixed natural numbers as before. Let m ∈ N and let {Uk}
3m

k=1 be the
canonical 1-thin cover of [0, 1] of size 1/3m.
We define χm(Cu(In

q)) := χm([0, 1], 1
qnN)
⋂

Cu(In
q). We also define Γm(Cu(In

q)) to be the set
of m-piecewise characteristic functions of Lsc([0, 1], 1

qnN) of the following form:

g : [0, 1] −→ 1
qnN

x 7−→


s1 ∈ {0,

q
qn }, if x ∈ [0, 1/3m[,

sk ∈ {
j

qn }0≤ j≤q, if x ∈ Uk, where 2 ≤ k ≤ 3m − 1,
s3m ∈ {0, q

qn }, if x ∈ ](3m − 1)/3m, 1].

In other words, Γm((Cu(In
q)) := {g ∈ χm([0, 1], 1

qnN) | s1, s3m ∈ {0, q
qn }, sk ∈ {

j
qn }0≤ j≤q}. Notice
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that the values s1, ..., s3m and {g(x), x ∈ X \ (
3n

∪
k=1

Uk)} are such that the resulting function g is
lower-semicontinuous.

When q is fixed and no confusion can be made, we sometimes write Γn
m := Γm(Cu(In

q)) and
χn

m := χm(Cu(In
q)). In the end, for a fixed q, one can observe that Γn

m = {g ∈ χ
n
m | g ≤

q
qn .1[0,1]}.

Proposition 6.4.4. Let q, n,m be fixed natural numbers. Then χn
m and

⋃
m∈N

χn
m are PoM.

Proof. Since χn
m := {g ∈ χm([0, 1], 1

qnN) | s1, s3m ∈
q
qnN} we trivially deduce that it is a

submonoid of χn
m. So it is clear that χn

m is a PoM and also we still have χn
m ⊂ χn

m′ for any
m ≤ m′. Thus, we conclude that

⋃
m∈N

χn
m is a PoM. □

Remark 6.4.5. Let q, n,m be fixed natural numbers. We observe that for any g ∈ χn
m, its canon-

ical decomposition
∞∑

k=0

1
qn .1Vk (see Lemma 6.1.14) can be written as

∞∑
k=0

(
(k+1)q−1∑

i=kq

1
qn .1Vi). Since

g ∈ χn
m we know that its canonical decomposition is a finite sum and that the sequence (Vk)k

is ⊆-decreasing. On the other hand g(0), g(1) ∈ q
qnN, and one can check that (

(k+1)q−1∑
i=kq

1
qn .1Vi)k∈N

is a decreasing sequence in Γn
m. So the canonical decomposition of g ∈ χn

m can be seen as a
sum of elements of a decreasing sequence in Γn

m ⊆ Γm([0, 1],N). Again, we may say that Γn
m

generates χn
m; see Remark 6.1.16.

In fact, an analogous version of Lemma 6.1.15 holds for Cu(In
q), using χn

m,Γ
n
m. In particu-

lar, for any two g, g′′ ∈ χn
m such that g′′ ≪ g and any m′ > m, we can find g′ ∈ χn

m′ such that
g′′ ≪ g′ ≪ g in χn

m′ .

Proposition 6.4.6. Let q, n,m be fixed natural numbers. Then
⋃

m∈N
χn

m is dense in Cu(In
q).

Proof. Let f ∈ Cu(In
q). First, observe that for any g ∈ Lsc(X,N) such that g ≪ f , we can find

f ′ ∈ Lsc(X,N) such that g ≪ f ′ ≪ f ≤ ∞. So without loss of generality, we can suppose that
f ≪ ∞. Equivalently, the canonical decomposition of f is a finite sum.
Thus, by Corollary 6.3.4 we know that f = sup

j
f≪, j. On the other hand, since f (0), f (1) are

compact, there exists some l ∈ N such that for any j ≥ l, then f≪, j(0) = f (0), f≪, j(1) = f (1).
We obtain that ( f≪, j) j≥l is a ≪-increasing sequence in Cu(In

q) whose supremum is f . The
result follows. □

6.4.7. The above corollary allows us to adapt the way we approximate elements of Lsc([0, 1],N)
using Γm, χm to Cu(In

q) using Γn
m, χ

n
m. A fortiori, it allows us to define a discrete Cu-semimetric

on HomCu(Cu(In
q),T ) as follows:
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Definition 6.4.8. Let T be a Cu-semigroup and let α, β : Cu(In
q) −→ T be two Cu-morphisms.

We define a discrete semimetric on HomCu(Cu(In
q),T ) by:

ddCu(α, β) := inf
m∈N
{1/3m | ∀g′ ≪ g ∈ Γn

m, α(g′) ≤ β(g) and β(g′) ≤ α(g)}.

If the infimum defined does not exist, we set the value to∞.

Remark 6.4.9. As in Lemma 6.2.9, one can easily show that ddCu(α, β) ≤ 1/3m if and only if
α ≃
Γn

m

β. In fact, all of the statements of Lemma 6.2.9 nicely adapt in this context.

Proposition 6.4.10. Let α, β : Cu(In
q) −→ T be Cu-morphisms. The following are equivalent:

(i) ddCu(α, β) = 0.
(ii) α ≃

Γn
m

β, for any m ∈ N.

(ii’) α ≈
Γn

m

β, for any m ∈ N.

(iii) α = β.
Hence ddCu is a semimetric on HomCu(Cu(In

q),T ).

Proof. As mentioned in Remark 6.4.9, one can easily obtain (i) is equivalent to (ii) is equiv-
alent to (ii’), similarly as before. (iii) implies (i) is trivial. Now suppose that ddCu(α, β) = 0.

Let f ∈ Cu(In
q). As observed in Remark 6.4.5, we write f =

∞∑
k=0

(
(k+1)q−1∑

i=kq

1
qn .1Vi). Also, for each

k ∈ N we can find a≪-increasing sequence (gk, j) j in
⋃

m∈N
χn

m such that sup
j∈N

gk, j =
(k+1)q−1∑

i=kq

1
qn .1Vi .

In fact, this sequence belongs to
⋃

m∈N
Γn

m.

Now by hypothesis, we know that α(gk, j) ≤ β(gk, j′) ≤ β(
(k+1)q−1∑

i=kq

1
qn .1Vi) and β(gk, j) ≤ α(gk, j′) ≤

α(
(k+1)q−1∑

i=kq

1
qn .1Vi) for any j < j′. Finally, passing to suprema, we obtain that α( f ) ≤ β( f ) and

β( f ) ≤ α( f ), which ends the proof. □

Lemma 6.4.11. Let q, n,m be fixed natural numbers and let f ∈ Cu(In
q) such that f ≪

∞. Then χn
m, f has a largest element that we write f n

≪,m. In fact, f n
≪,m ≤ f≪,m ≪ f and

analogously, we also get that ( f n
m,≪)m∈N is a ≪-increasing sequence whose supremum is f .

See Corollary 6.3.4.

Proof. Let q, n,m be fixed natural numbers and let f ∈ Cu(In
q) such that f ≪ ∞. Consider

f≪,m as in Corollary 6.3.4. Then f n
≪,m is constructed as follows:

(1) Put f n
≪,m |U1

:= max
q

qnN
{k ≤ f≪,m |U1

} and f n
≪,m |U3m−1

:= max
q

qnN
{k ≤ f≪,m |U3m−1

}.
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(2) Put f n
≪,m |[0,1]\(U1∪U3m−1) := f≪,m |[0,1]\(U1∪U3m−1).

Obviously, f n
≪,m ≤ f≪,m ≪ f . The last statement of the lemma follows from density of

⋃
m∈N

χn
m,

as before. □

Remark 6.4.12. Observe that we shown a similar statement in the proof of Proposition 6.4.6.
Also, an analogous version of Corollary 6.3.6 holds for Cu(In

q). That is, (.)n
≪,m is compatible

with +,≤,≪ and suprema of≪-increasing sequences in
⋃
l∈N
χn

l .

6.4.13. In the end, we have defined analogous tools Γn
m, χ

n
m, f n

≪,m for Cu(In
q) that act the same

and satisfy the same properties as before. In particular, we can now adapt the proof of Theo-
rem 6.3.8 to this new context and everything is proved similarly:

Theorem 6.4.14. Let (qi)i∈N, (ni)i∈N be two sequences of natural numbers. For any i ∈ N,
consider Cu-morphismsσii+1, τii+1 : Cu(Ini

qi) −→ Cu(Ini+1
qi+1) that define two inductive sequences

(Cu(Ini
qi), σi j)i∈N and (Cu(Ini

q j), τi j)i∈N in Cu. Let S and T be their respective inductive limits.
Suppose there exists a strictly increasing sequence of positive integers (mi)i such that:
(i) σii+1 ≈

Γ
ni
mi

τii+1, for any i ∈ N.

(ii) For any i ≤ j and any l ∈ N, we have σi j(χ
ni
l ), τi j(χ

ni
l ) ⊆ χni+1

l , where σi j := σ j−1 j ◦ ...◦σii+1

and τi j := τ j−1 j ◦ ... ◦ τii+1.
Then, S ≃ T as Cu-semigroups.

Proof. Combine Remark 6.4.9 and Theorem 6.4.14 to get the result. □

6.4.15. A generalization to finite direct sums:
We end this chapter by extending the approximate intertwining theorem to a more general
case: The inductive sequence is now a sequence of finite direct sums of Lsc(X,N) and Cu(In

q),
where X is the circle or the interval and q, n are natural numbers. As done for Cu(In

q), the
aim is to find adequate Γm, χm, f≪,m for the finite direct sums that will allow us to adapt all the
results of the previous sections to this generalization. This notion will be extended component-
wise.

Definition 6.4.16. Let S :=
l
⊕

k=1
S k, where S k is either Lsc([0, 1],N), Lsc(T,N) or Cu(In

q) for

some q, n ∈ N. Let m ∈ N and let f ∈ S such that f ≪ ∞. We write f = ( f1, ..., fl) and we
define:

Γm(S ) :=
l
⊕

k=1
Γm(S k).

χm(S ) :=
l
⊕

k=1
χm(S k).

f≪,m := ( f ∗1≪,m, ..., f ∗l ≪,m).
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where f ∗k ≪,m := fk≪,m if S k ≃ Lsc(X,N) and f ∗k ≪,m := fk
n
≪,m if S k ≃ Cu(In

q).
Now let T be a Cu-semigroup. For any two Cu-morphisms α, β : S −→ T , we define a discrete
semimetric on HomCu(S ,T ) by:

ddCu(α, β) := inf
m∈N
{1/3m,∀g′ ≪ g ∈ Γm, α(g′) ≤ β(g) and β(g′) ≤ α(g)}.

If the infimum defined does not exist, we set the value to∞.

Lemma 6.4.17. Let S :=
l
⊕

k=1
S k, where S k is either Lsc([0, 1],N), Lsc(T,N) or Cu(In

q) for

some q, n ∈ N. Let T be a Cu-semigroup. Then, for any two Cu-morphisms α, β : S −→ T

we have ddCu(α, β) = max
k=1,..,l

(ddCu(αk, βk)), where αk, βk : S k
ik
↪−→ S −→ T are Cu-morphisms

defining α, β.

If moreover T :=
l′

⊕
k=1

Tk, then we can picture α, β as:

α :=


α11 ... αl1

. .

. .

α1l′ ... αll′

 β :=


β11 ... βl1

. .

. .

β1l′ ... βll′


where αkk′ : S k

ik
↪−→ S

α
−→ T

πk′
−→ Tk′ are Cu-morphisms defining α, β (respectively βkk′). Then

ddCu(α, β) = max
k,k′

ddCu(αkk′ , βkk′).

Proof. Let us prove the second statement and the first result can be proved similarly (by taking

l′ = 1 and any T ∈ Cu). Let S :=
l
⊕

k=1
S k and T :=

l′

⊕
k=1

Tk be Cu-semigroups as in the theorem.

Let α, β : S −→ T be Cu-morphisms. We are going to show that ddCu(α, β) ≤ 1/3m if and
only if max

k,k′
ddCu(αkk′ , βkk′) ≤ 1/3m.

Suppose that ddCu(α, β) ≤ 1/3m. Let k, k′ be indices of the direct sums. Then for any g′, g ∈
Γm(S k) such that g′ ≪ g, then ik(g′) ≪ ik(g) in Γm(S ). Using the hypothesis, we obtain
that α ◦ ik(g′) ≤ β ◦ ik(g) and β ◦ ik(g′) ≤ α ◦ ik(g). In particular, projecting onto Tk′ , we
get πk′ ◦ α ◦ ik(g′) ≤ πk′ ◦ β ◦ ik(g) and πk′ ◦ β ◦ ik(g′) ≤ πk′ ◦ α ◦ ik(g). We conclude that
ddCu(αkk′ , βkk′) ≤ 1/3m for any k, k′.
Conversely, suppose that max

k,k′
ddCu(αkk′ , βkk′) ≤ 1/3m. Let g′, g ∈ Γm(S ) such that g′ ≪ g.

Then g = (g1, ..., gl), g′ = (g′1, ..., g′l) for some gk, g′k ∈ S k such that gk ≪ g′k. Now we compute

α(g′) = (
l∑

k=1
π1 ◦α◦ ik(g′k), ...,

l∑
k=1
πl′ ◦α◦ ik(g′k)) ≪ (

l∑
k=1
π1 ◦β◦ ik(gk), ...,

l∑
k=1
πl′ ◦β◦ ik(gk)) = β(g).

We conclude that α(g′) ≤ β(g) and β(g′) ≤ α(g), which ends the proof. □
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6.4.18. Now that everything is defined component-wise it is almost immediate that all of the
above results apply:
In particular, χm and

⋃
m∈N

χm are PoM. The former is generated by Γn and the latter is dense

in S . It is not hard to check that the results in Section 6.1 adapt to this component-wise def-
inition. Also, as a consequence of Lemma 6.4.17, ddCu is a semimetric and one can check
that the results in Section 6.2 adapt to this component-wise definition. Finally, (.)≪,m is again
compatible with +,≤,≪ and suprema of≪-increasing sequences in

⋃
l∈N
χn

l .

In the end, we have defined analogous tools Γm, χm, f≪,m for S being a finite direct sum of
Lsc(X,N) and Cu(In

q), where X is the circle or the interval and q, n are natural numbers, that
act the same and satisfy the same properties as before. In particular, we can now adapt the
proof of Theorem 6.3.8 to this new context and everything works out the same:

Theorem 6.4.19. Let us consider two inductive sequences (S i, σi, j)i∈N) and (S i, τi, j)i∈N) in Cu,

where S i :=
li
⊕

k=0
S k,i for some S k,i that are either Lsc([0, 1],N), Lsc(T,N) or Cu(Ini,k

qi,k) for some

qi,k, ni,k ∈ N. Let S and T be their respective inductive limits. Suppose there exists a strictly
increasing sequence of positive integers (mi)i such that:
(i) σii+1 ≈

Γmi (S i)
τii+1, for any i ∈ N.

(ii) For any i ≤ j and any l ∈ N, we have σi j(χl(S i)), τi j(χl(S i)) ⊆ χl(S j), where σi j :=
σ j−1 j ◦ ... ◦ σii+1 and τi j := τ j−1 j ◦ ... ◦ τii+1.
Then, S ≃ T as Cu-semigroups.

6.4.20. (Open line of research)
Since we have been adapting our approximate intertwining theorem to different settings, it
seems that we may be able to generalize the constructions done in this chapter as follows:
Let S be a Cu-semigroup that admits a countable number of subsets χn such that χn ∈ PoM
and such that

⋃
n∈N

χn ∈ PoM is dense in S . Set S≪∞ := {s ∈ S | s ≪ ∞}. Suppose that there

exist ϵn : S≪∞ −→ χn such that for any s ∈ S≪∞, we have ϵn( f ) ≪ ϵn+1( f ) and sup
n
ϵn( f ) = f .

This would allow us to create a semimetric ddCu and we might be able to generalize the
approximate intertwining theorem to any inductive sequence of Cu-semigroups satisfying all
the above.
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Chapter 7

A concrete use of Cu1 in the classification
of certain NCCW 1 algebras

In this chapter, we exhibit a concrete example of two C∗-algebras A and B with the following
features: these are non simple, unital, separable NCCW 1 algebras. Moreover, they have
isomorphic K1 group, with torsion, and isomorphic Cu-semigroup. However, they are not
isomorphic as their Cu1-semigroup distinguish them.
This example has been greatly inspired by the lines of work done in [34], as the structure
of these algebras are in many ways similar, even though the building blocks, properties and
arguments involved are quite different. Let us first recall a construction done in [31].

7.1 Preliminaries

7.1.1. [31, Section 2] Recall the construction of Evans-Kishimito folding interval algebras
introduced in Paragraph 6.4.2. Let q be a fixed natural number. Let n ∈ N and e be a projection
of Mq and consider In

q,e. By Proposition 4.4.4, we know that:

K0(In
q,e) ≃ Z K1(In

q,e) ≃ Z/qZ

Arguing similarly as in [31, Proof of 2.2], we now consider the two following paths in [0, 1],
ξ0 : t 7−→ t/2 and ξ1 : t 7−→ 1 − t/2. We have the following ∗-homomorphism:

ψn,e : In
q,e −→ I

n+1
q,e

f 7−→ f (ξ0) ⊗ e + f (ξ1) ⊗ f
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Moreover,

K0(ψn,e) : Z
×q
−→ Z K1(ψn,e) : Z/qZ

× rank(e)
−→ Z/qZ.

Lemma 7.1.2. Let us end up these preliminaries with a lemma on inductive limits in AbGroups
that will be helpful later on:
Let p1, p2 be distinct prime numbers. Then lim

−→
(Z/p1 p2Z

×p1
−→ Z/p1 p2Z

×p1
−→ ...) ≃ Z/p2Z.

Proof. Let p11, p2 be distinct prime numbers. A fortiori p1 and p2 are coprime. Hence,
from the well-known Chinese remainder theorem, we know that Z/p1 p2Z ≃ Z/p1Z × Z/p2Z.
Also, Z/p2Z

×p1
−→ Z/p2Z is an isomorphism of abelian groups -it corresponds to a permutation

in Z/p2Z-, and Z/p1Z
×p1
−→ Z/p1Z is the zero morphism. Let us write φp1 : Z/p1 p2Z

×p1
−→

Z/p1 p2Z, we have hence imφp1 ≃ Z/p1Z and kerφp1 ≃ Z/p2Z. In the end, the inductive

system considered is naturally isomorphic to (Z/p1Z × Z/p2Z
0×φp1
−→ Z/p1Z × Z/p2Z

0×φp1
−→ ...)

and we deduce the result. □

7.2 The example

7.2.1. We will now construct two C∗-algebras A and B that are inductive limits of direct
sums of building blocks that are either matrix algebras over C([0, 1]) or matrix algebras over
some Evans-Kishimito folding interval algebra In

q,e. As stated before, these NCCW 1 algebras
are non simple, unital, separable and they have stable rank one. We will also prove that
K1(A) ≃ K1(B) and Cu(A) ≃ Cu(B), whereas Cu1(A) ; Cu1(B).

Definition 7.2.2. Let us use the following notations:
• (tk)k is a countable dense subset of [0, 1],
• (pk)k denotes the prime numbers (p0 = 2 and convention p−1 = 1),
• (qk)k is defined by q0 = p0 and qk := pk pk−1 for k ≥ 1,
• (mk)k is a strictly increasing sequence of natural numbers such that 1/qmk−3

0 ≤ 1/3k for any
k ∈ N.
Also, for any k ∈ N let ek

A, e
k
B be projections of Mqk such that rank(ek

A) = pk−1 and rank(ek
B) =

pk. Finally, we write  I
n
qk

:= In
qk ,ek

A

Jn
qk

:= In
qk ,ek

B
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and we do not refer to ek
A, e

k
B no more for notational purposes.

Let us build the inductive systems of A and B. Consider

A0 = C[0, 1],

A1 = Mq
m0
0

(I1
q0

) ⊕C[0, 1],

A2 = Mq
m0
0 qm1

0
(I2

q0
) ⊕ Mqm1

1
(I1

q1
) ⊕C[0, 1],

...

An = Mq
m0
0 ...qmn−1

0
(In

q0
) ⊕ Mqm1

1 ...qmn−1
1

(In−1
q1

) ⊕ ... ⊕ Mqmi
i ...qmn−1

i
(In−i

qi
) ⊕ ... ⊕ Mqmn−1

n−1
(I1

qn−1
) ⊕C[0, 1],

Let us simplify notations by writing [n, i] :=
n−1∏
j=i

qm j

i , for any 0 ≤ i ≤ n − 1, and [n, n] := 1.

Notice that [n + 1, i] = qmn
i [n, i] for any 0 ≤ i ≤ n − 1. Thus, we finally rewrite:

An :=
n−1⊕
i=0

M[n,i](In−i
qi

) ⊕ M[n,n](C[0, 1])

Bn :=
n−1⊕
i=0

M[n,i](Jn−i
qi

) ⊕ M[n,n](C[0, 1])

Now that we have the algebras, let us build the morphisms of our inductive sequences. Let
n ∈ N. First, we consider the following partial morphisms:
(i) For any 0 ≤ i ≤ n − 1 we define:

ϕi
nn+1 : M[n,i](In−i

qi
) −→ M[n+1,i](In−i+1

qi
)

f 7−→


f (ξ0) ⊗ ei

A + f (ξ1) ⊗ f i
A

f (1/r) ⊗ 1Mqi

...

f (r − 1/r) ⊗ 1Mqi


ψi

nn+1 : M[n,i](Jn−i
qi

) −→ M[n+1,i](Jn−i+1
qi

)

f 7−→


f (ξ0) ⊗ ei

B + f (ξ1) ⊗ f i
B

f (1/r) ⊗ 1Mqi

...

f (r − 1/r) ⊗ 1Mqi
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where rn,i := qmn
i .

(i) For i = n we define:

ϕn
nn+1 : C[0, 1] −→ Mqmn

n
(I1

qn
) ψn

nn+1 : C[0, 1] −→ Mqmn
n

(J1
qn

)
f 7−→ f (0) ⊗ 1M

qmn+1
n

f 7−→ f (0) ⊗ 1M
qmn+1

n

(iii) For i = n + 1 we define:

ϕn+1
nn+1, ψ

n+1
nn+1 : C[0, 1] −→ C[0, 1]

f 7−→ ftn

where ftn is the evaluation map at tn.
We now define ϕnn+1 : An −→ An+1, ψnn+1 : Bn −→ Bn+1 by:

ϕnn+1 := (ϕ0
nn+1, ..., ϕ

n−1
nn+1, (ϕ

n
nn+1, ϕ

n+1
nn+1)) ψnn+1 := (ψ0

nn+1, ..., ψ
n−1
nn+1, (ψ

n
nn+1, ψ

n+1
nn+1))

and 
A := lim

−→n
(An, ϕnn+1)

B := lim
−→n

(Bn, ψnn+1)

Proposition 7.2.3. Both A and B are separable unital C∗-algebras of with stable rank one.

Proof. Since all C∗-algebras of the inductive systems are separable and unital, plus all mor-
phisms are unital, we easily obtain that A and B are unital separable C∗-algebras. Finally we
know from Lemma 4.4.3 that they have stable rank one. □

7.2.4. We will now describe the (closed two-sided) ideals of A and B. We recall that whenever
we say ideal, we mean closed two-sided ideals. Further, by explicitly describing the simple
ideals of A and B, we will deduce their K-Theory. The description of the simple ideals will
also be used at the end of this chapter to prove that the Cu1-semigroup distinguish these two
C∗-algebras.

Lemma 7.2.5. Let n ∈ N∗ and let 0 ≤ i ≤ n − 1. We consider the following direct sums of full
blocks of An:

In,i := M[n,i](In−i
qi

) Ic
n,i := (

n−1
⊕

j=0, j,i
M[n, j](In− j

q j
)) ⊕ M[n,n](C[0, 1])

Respectively Jn,i and Jc
n,i in Bn. Then:
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(i) Any simple ideal of A is of the form

in := lim
−→
m>n

(Im,n, ϕmm′ |Im,n
).

for some n ∈ N. Respectively jn for B.
(ii) For any n ∈ N, write

an := lim
−→
m>n

(Ic
m,n, ϕmm′ |Ic

m,n
).

Respectively bn for B. Then we have an ⊕ in = A, and bn ⊕ jn = B. Moreover,

A/ ⊕
n∈N
in ≃ B/ ⊕

n∈N
jn ≃ C.

Proof. We prove the statements for A and B is proved similarly.
(i) This is inspired by [37, Lemma 1]. We first describe a sufficient condition for an ideal of
inductive system to be simple. Let J be a (closed two-sided) ideal of A. Using [8, Lemma
4.5], we know that J0 := ∪

n∈N
(ϕn∞(An) ∩ J) is dense in J. Hence it is enough to check that the

algebraic limit J0 is simple. Write Jn := ϕ−1
n∞({ϕn∞(An) ∩ J}). Observe that for any n, Jn is an

ideal of An and hence a C∗-algebra, and we have J0 = ∪
n∈N
ϕn∞(Jn). We deduce that it is enough

to show that for any n ∈ N, any x ∈ Jn, then there exists m ≥ n such that Jmϕnm(x)Jm = Jm.
Let n ∈ N. We want to show that in is simple. Thus we need to show that for any g ∈ Im,n such
that g , 0, then there exists m′ > m such that Im′,nϕmm′(g)Im′,n = Im′,n.
Let m > n and let g ∈ Im,n such that g , 0. Observe that {k/rm′,n, k = 1, ..., (rm′,n−1),m′ > m} is
dense in [0, 1]. Also note that if the support of g contains an interval of length s, then so does
the support of ϕmm′(g). We deduce that there exists m′ ≥ m such that k/rm′,n ∈ supp(ϕmm′(g))
for some 1 ≤ k ≤ (rm′,n − 1) and hence the ideal generated by ϕmm′(g) is dense in Im′,n. We
conclude that in is a simple C∗-algebra for any n ∈ N.
Now, by [8, Lemma 4.5] and the above, we deduce that any ideal of A is in fact of the form
lim
−→

(In, ϕnm |In
), for some n and some In ∈ Lat(An). One can check then that {in} are the only

simple ideals of A.
(ii) Let n ∈ N. Notice that in ∩ an = ∅ and that in + an = A so we get the first part of the
statement.
Now consider (C, en)n∈N, where en : An −→ C given by en( f0, ..., fn) = fn(tn). It is clear that
(C, en) is a cocone to the inductive system (see Paragraph 1.2.3). We deduce that there exists
a unique ∗-homomorphism e : A −→ C satisfying the universal properties of the direct limit.
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It is trivial that e is surjective and also that ⊕
n∈N
in ⊆ ker e. Finally, since ker e is a closed two-

sided ideal of A and also using observations made from [8, Lemma 4.5], we clearly have that
⊕

n∈N
in ⊇ ker e -in fact, one can argue saying that ⊕

n∈N
in is a maximal (closed two-sided) ideal of

A-. We conclude that A/ ⊕
n∈N
in ≃ C. □

Corollary 7.2.6.
K0(A) ≃ K0(B).
K1(A) ≃ K1(B).

Proof. Let n ∈ N. By Paragraph 7.1.1 for any m > n, we compute that K0(ϕn
mm+1) : Z

×qmm+1
n
−→

Z and K1(ϕn
mm+1) : Z/qnZ

×pn−1
−→ Z/qnZ. Similarly, we obtain K0(ψn

mm+1) : Z
×qmm+1

n
−→ Z and

K1(ϕn
mm+1) : Z/qnZ

×pn
−→ Z/qnZ.

A quick computation on the one hand and using Lemma 7.1.2 on the other hand, we finally
compute:

K0(in) ≃ K0(jn) ≃ Z[ 1
qn

]
K1(in) ≃ Z/pnZ K1(jn) ≃ Z/pn−1Z

Note that we have fixed p−1 := 1, and hence K1(j0) ≃ {0}. Observe that for the (maximal)
ideals ⊕

n∈N
in, ⊕

n∈N
jn of A, B respectively, we have K0( ⊕

n∈N
in) ≃ K0( ⊕

n∈N
jn) and also K1( ⊕

n∈N
in) ≃

K1( ⊕
n∈N
jn) (here the isomorphism is a shift adding, or removing 0 at the beginning of the se-

quence).
On the other hand, since A/ ⊕

n∈N
in ≃ C, we can use the 6-term exact sequence (see Theo-

rem 1.1.13) with the canonical short-exact sequence 0 −→ ⊕
n∈N
in −→ A −→ A/ ⊕

n∈N
in −→ 0,

and we obtain:
K1( ⊕

n∈N
in) // K1(A) // 0

��
Z

δ1

OO

K0(A)oo K0( ⊕
n∈N
in)oo

Since π : A −→ A/ ⊕
n∈N
in is unital and K0(A/ ⊕

n∈N
in) is generated by [1]C, we deduce that

K0(A) −→ Z is surjective and hence ker(δ1) ≃ Z. This gives us δ1 = 0 and we deduce the
following:

(i) K1(A) ≃ K1( ⊕
n∈N
in).

(ii) 0 −→ K0( ⊕
n∈N
in) −→ K0(A) −→ Z −→ 0 is exact.

Since Z is free, the exact sequence of (ii) is split-exact and since all of this works out in a
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similar way with ⊕
n∈N
jn, B and we conclude the following:

(i) K1(A) ≃ K1( ⊕
n∈N
in) ≃ K1( ⊕

n∈N
jn) ≃ K1(B).

(ii) K0(A) ≃ K0( ⊕
n∈N
in) ⊕ Z ≃ K0( ⊕

n∈N
jn) ⊕ Z ≃ K0(B).

□

Lemma 7.2.7. For any n ∈ N, Cu(An) ≃ Cu(Bn), that we write S n. Now consider αnn+1 :=
Cu(ϕnn+1) and βnn+1 := Cu(ψnn+1). We have αnn+1, βnn+1 : S n −→ S n+1.
Then ddCu(αnn+1, βnn+1) ≤ 1/3n.

Proof. Let n ∈ N. In the same picture as in Lemma 6.4.17, we have:

αnn+1 :=



α0
nn+1

. . .
. . .

αn
nn+1

αn+1
nn+1


βnn+1 :=



β0
nn+1

. . .
. . .

βn
nn+1

βn+1
nn+1


where αi

nn+1 := Cu(ϕi
nn+1) for any 0 ≤ i ≤ n and αn+1

nn+1 := Cu(ϕn+1
nn+1), respectively for B. We

already know that αn
nn+1 = βn

nn+1 and that αn+1
nn+1 = βn+1

nn+1 since the ∗-homomorphisms are the
same. We are now going to show that ddCu(αi

nn+1, β
i
nn+1) ≤ 1/qmn−2

i for any 0 ≤ i ≤ n and since
ddCu(αnn+1, βnn+1) = max

i
(ddCu(αi

nn+1, β
i
nn+1)), the result will follow:

Let 0 ≤ i ≤ n − 1. Recall that rn,i := qmn
i . Take ln,i := max

l∈N
{l | 3l < qmn−1

i } and write {U j}
3ln,i

j=1

the canonical 1-thin cover of [0, 1] of size 1/3ln,i . Observe that 1/qmn−1
i < 1/3ln,i ≤ 1/qmn−3

i and
hence any interval U j of the canonical 1-thin cover contains at least qi points of the partition
{k/rn,i}k of [0, 1]. In fact, we write c j := card{k/rn,i ∈ U j}, and hence we have c j ≥ qi for any

1 ≤ j ≤ 3ln,i . We also consider d := {k/rn,i ∈ [0, 1] \ (
3n

∪
j=1

U j)}.

Let h′, h be elements of Γln,i(Cu(In−i
qi

)) such that h′ ≪ h. By construction of Γln,i(Cu(In−i
qi

)), we
know that 0 ≤ h′, h ≤ qi.( 1

qn−i
i
.1[0,1]) and hence we obtain:

αi
nn+1(h′), βi

nn+1(h′) ≤ qi.(
qi

qn−i+1
i

.1[0,1]) +
3ln,i∑
j=1

c j.h′(U j).(
qi

qn−i+1
i

1[0,1]) +
∑
x∈d

h′(x).( qi

qn−i+1
i

1[0,1])

αi
nn+1(h), βi

nn+1(h) ≥ 0 +
3ln,i∑
j=1

c j.h(U j).(
qi

qn−i+1
i

1[0,1]) +
∑
x∈d

h(x).( qi

qn−i+1
i

1[0,1]).
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where h′(U j), h(U j) respectively denote the (constant) values of h′, h on U j.
If h′ = h, then h is compact and hence h = qi.( 1

qn−i
i
.1[0,1]). In this case, we easily compute that

α(h) = β(h). Otherwise, we have that supp h′ ≪ supp h and there exists at least one interval
U j such that h′(U j) < h(U j). Combined with the fact that c j ≥ qi, we deduce the following:

3ln,i∑
j=1

c j.h(U j).(
qi

qn−i+1
i

1[0,1]) ≥ qi.(
qi

qn−i+1
i

.1[0,1]) +
3ln,i∑
j=1

c j.h′(U j).(
qi

qn−i+1
i

1[0,1]).

Moreover, it is clear that
∑
x∈d

h′(x).( qi

qn−i+1
i

1[0,1]) ≤
∑
x∈d

h(x).( qi

qn−i+1
i

1[0,1]).

All of the above exactly gives us ddCu(αi
nn+1, β

i
nn+1) ≤ 1/3ln,i ≤ 1/qmn−3

i for any 0 ≤ i ≤ n − 1.
We finally conclude that ddCu(αnn+1, βnn+1) = max

i=0,..,n−i
(ddCu(αi

nn+1, β
i
nn+1)) ≤ 1/qmn−3

0 ≤ 1/3n by

the way we chose (mn)n. □

Corollary 7.2.8. The approximate intertwining theorem gives us Cu(A) ≃ Cu(B).

Proof. We only have to check the assumption (ii) of Theorem 6.4.14 as the previous lemma
tells us the semimetric between morphisms of the inductive sequence goes to 0 as n tends to
∞ fast enough. Now let n ∈ N, let 0 ≤ i ≤ n − 1 and let l ∈ N. It is not hard to see that
for any i, n, l in N, we have αi

nn+1(χl(Cu(In−i
qi

))) ⊆ χl−1((Cu(In−i
qi

))) and βi
nn+1(χl(Cu(Jn−i

qi
))) ⊆

χl−1((Cu(Jn−i
qi

))).
Also, for any element s ∈ Lsc([0, 1],N), αn

nn+1(s), αn+1
nn+1(s), βn

nn+1(s), βn+1
nn+1(s) are constant lower-

semicontinuous maps over [0, 1]. A fortiori, they are l-piecewise characateristic functions for
any size l ∈ N in their respective Cu-semigroups.
We can finally state that for any n,m in N, any m ∈ N, αnm(χl(S n)), βnm(χl(S n)) ⊆ χl(S m). We
conclude using Theorem 6.4.19. □

Theorem 7.2.9. There is no Cu∼-isomorphism between Cu1(A) and Cu1(B). A fortiori, A ; B.

Proof. Recall the following computations from the proof of Corollary 7.2.6:

K0(in) ≃ K0(jn) ≃ Z[ 1
qn

]
K1(in) ≃ Z/pnZ K1(jn) ≃ Z/pn−1Z

Now, suppose there exists a Cu∼ isomorphism γ : Cu1(A) −→ Cu1(B). Then by everything
done in Chapter 3 and more precisely in Corollary 3.3.17 and Theorem 3.3.19, we know
that for any Cu1(I) ∈ Lat(Cu1(A)) ideal of Cu1(A) (respectively simple ideal) there exists a
unique ideal J ∈ Lat(B) (respectively simple ideal) such that γ(Cu1(I)) = Cu1(J) and such
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that γ|Cu1(I) : Cu1(I) −→ Cu1(J) is a Cu∼-isomorphism. Moreover, the following diagram is
row-exact and commutative:

0 // Cu(I)
α0 |Cu(I)

��

i // Cu1(I)
α|Cu1(I)

��

j // K1(I)

αI

��

// 0

0 // Cu(J)
i
// Cu1(J)

j
// K1(J) // 0

By Lemma 7.2.5, we know that the simple ideals of Cu1(A), (respectively Cu1(B)) are exactly
{Cu1(in)}n∈N, (respectively {Cu1(jn)}n∈N). Let n ∈ N. With all the above, we know that there
exists a unique m ∈ N such that γ(Cu1(in)) = Cu1(jm) and such that γ|in : Cu1(in) −→ Cu1(jm) is
a Cu∼-isomorphism. Also by the diagram above, γ|in induces the two following isomorphisms: (γ|in)+ : Cu(in) ≃ Cu(jm) in Cu

(γ|in)max : K1(in) ≃ K1(jm) in AbGp

On the other hand, we have: K0(in) ≃ K0(jm) if and only if n = m
K1(in) ≃ K1(jm) if and only if n + 1 = m

We hence arrive to a contradiction since n , n + 1. We conclude that Cu1(A) ; Cu1(B). A
fortiori, A ; B. □

7.2.10. (Open line of research)
We have seen that the Cu1-semigroup captures the information of the K1-group of any ideal
of the C∗-algebra. More particularly, we have constructed an example of NCCW 1 algebras
that the Cuntz semigroup could not distinguish.
It would be of interest to investigate on extending the classification results of L. Robert for
NCCW 1 algebras with no K1-obstructions by means of an augmented version of Cu (see
[63]), to any NCCW 1 algebra by means of Cu1.
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Chapter 8

Classification of unitary elements of
certain C∗-algebras

As already explained in Chapter 5, in the aim of classifying C∗-algebras, classification of ∗-
homomorphisms from a subcategory of C∗ into a large class of C∗-algebras has appeared to
be an efficient way of finding invariants for C∗-algebras; see Theorem 5.1.9. In this setting,
the Cuntz semigroup plays a major role.
In this chapter, we are going to see up to which extent the Cuntz semigroup classifies ∗-homo-
morphisms from C(T) to A, where A ∈ C∗ is taken in the largest class possible. In the first
section, we (partially) classify unitary elements of AF algebras, by means of the functor Cu
together with a scale condition. In section 2 and 3, we prove that we cannot generalize this
result to a larger class of C∗-algebras, by constructing examples of unitary elements first in
C([0, 1]) ⊗ M2∞ and then in the Jiang-Su algebra Z that agree at level of the functor Cu but
fail to be approximately unitarily equivalent.
As before, we shall assume that A is a separable C∗-algebra with stable rank one. We recall
that in order to ease the notations, we use C∗ to denote the category of separable C∗-algebras
of stable rank one. Let us first recall some correspondence between unitary elements, of a
C∗-algebra A and ∗-homomorphisms from C(T) to A.

8.0.1. (Unitary elements - Homomorphisms)
Let A be a unital C∗-algebra. There is a one-to-one correspondence between the set unitary
elements of A, that we write U(A), and the set of unital ∗-homomorphisms from C(T) to A,

139



8. Classification of unitary elements of certain C∗-algebras

that we write HomC∗,1(C(T), A). Let u be a unitary element of A. We define:

φu : C(T) −→ A
idT 7−→ u

Equivalently, for any f ∈ C(T) ⊇ C(sp(u)), we define φu( f ) := f (u), where f (u) is obtained
by functional calculus. Then, we have the following bijection:

φ : U(A) ≃ HomC∗,1(C(T), A)
u 7−→ φu

We may abuse the language and say that a functor classifies unitary elements of A whenever
it classifies homomorphisms from C(T) to A; see Definition 5.1.5.

Definition 8.0.2. Let A be a unital C∗-algebra. Let u, v be unitary elements in A. We say that
u and v are approximately unitarily equivalent, and we write u ∼aue v, if inf

w∈U(A)
∥wuw∗−v∥ = 0.

8.0.3. Let us define two pseudometrics on Hom1(C(T), A). Recall that we denote the open
sets of T by O(T).

Definition 8.0.4. [41, Definition 3.1] Let A be a unital C∗-algebra. For any U ∈ O(T), and
any r > 0, we define an r-open neighborhood of U, that we write Ur := ∪

x∈U
B(x, r); see

Definition 6.2.7.
Now, for any two ∗-homomorphisms φu, φv : C(T) −→ A, we define:

dCu(φu, φv) := inf{r > 0 | ∀U ∈ O(X), φu( fU) ≲Cu φv( fUr ) and φv( fU) ≲Cu φv( fUr )}

where Ur is an r-open neighborhood of U and fU : T −→ R+ is a continuous function such
that supp( fU) = U. We refer to dCu as the Cuntz pseudometric. We also define:

dU(φu, φv) := inf{ϵ > 0 | ∀F ⊆
f inite
C(T)1, ∃w ∈ U(A) : ∥wφu( f )w∗ − φv( f )∥ < ϵ,∀ f ∈ F}.

We refer to dU as the unitary pseudometric.
For both constructions, if the infimum defined does not exist, we set the value to∞.

Remark 8.0.5. For a C∗ algebra A, we can define a unitary pseudometric over U(A) as the
distance between unitary orbits of two unitary elements of A as follows: Let u, v be unitary
elements in A, then dU(u, v) := inf

w∈U(A)
∥wuw∗ − v∥.
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Proposition 8.0.6. Let A be a unital C∗-algebra. Let u, v be unitary elements of A. Then:
(i) dU(u, v) ≤ dU(φu, φv).
(ii) dCu(φu, φv) ≤ dU(u, v).
(iii) dCu(φu, φv) = dCu(Cu(φu),Cu(φv)), see Definition 6.2.7.
Also the following conditions are equivalent:
(iv) dU(u, v) = 0 if and only if dU(φu, φv) = 0 if and only if u ∼aue v if and only if φu ∼aue φv.

Proof. One can use functional calculus to obtain the proposition. □

8.1 Classification of unitary elements of AF algebras

8.1.1. In this section, we classify homomorphisms from C(T) to any AF algebra by means of
the functor Cu. We mention that so far, only the uniqueness condition has been proved; see
Definition 5.1.5. To do so, we first prove an abstract version of the theorem in the category
Cu. We will hence use notations and tools from Chapter 6 and we refer the reader there for
some definitions/properties.

Theorem 8.1.2. Let X be the circle or the interval and let n ∈ N. Let (S i, σi j)i∈N be an
inductive sequence in the category Cu and (S , σi∞)i∈N its direct limit.
Let α, β : Lsc(X,N) −→ S be Cu-morphisms that factorize through a S i for some i ∈ N, that
is, there exist αi, βi : Lsc(X,N) −→ S i such that α = σi∞ ◦ αi and β = σi∞ ◦ β. If α ≈

Γn
β, then

there exists some j ≥ i such that σi j ◦ αi ≈
Γn−1

σi j ◦ βi.

Proof. Let α, β : Lsc(X,N) −→ S be Cu-morphisms that factorize through S i for some i ∈ N,
such that α ≈

Γn
β. For any g, g′′ ∈ Γn−1 such that g ≪ g′′, we can find some g′ ∈ Γn such that

g ≪ g′ ≪ g′′ in Γn (see Lemma 6.1.15). Furthermore, using the hypothesis, we know that
σi∞ ◦ αi(g′) ≪ σi∞ ◦ βi(g′′) and σi∞ ◦ βi(g′) ≪ σi∞ ◦ αi(g′′). Thus, using (L2) of Proposi-
tion 6.3.2, we deduce that there exists some j ≥ i such that σi j ◦ αi(g) ≪ σi j ◦ βi(g′′) and
σi j ◦ βi(g) ≪ σi j ◦ αi(g′′). Finally, since Γn is a finite set, we can find some j ∈ N big enough
such that σi j ◦ αi ≈

Γn−1
σi j ◦ βi.

□

8.1.3. (Open line of research)
The original version of Theorem 8.1.2 was also including the following:
Let α : Lsc(X,N) −→ S be a Cu-morphism. Then there exists i ∈ N and a Cu-partial
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morphism αi : Γn ⊆ Lsc(X,N) −→ S i such that α ≈
Γn
σi∞ ◦ αi.

However, the proof is still on-going. Note that this would allow us to obtain the existence part
of the classification of unitary elements of AF algebras by means of the functor Cu.

8.1.4. We will now apply this abstract theorem to homomorphisms between Cu(C(T)) and
Cu(A), where A is any AF algebra. For the rest of this section, we denote {Uk}

3n

k=1 the canonical
1-thin cover of T of size 1/3n and as in Chapter 6, we denote Γn to be the set of n-piecewise
characteristic functions of Lsc(T,N) taking values in {0, 1}. See Paragraph 6.1.9.

Definition 8.1.5. A bipartite graph is a graph whose vertices can be divided in two disjoint
sets U,V such that every edge connects a vertex of U to one of V . We often write G =
(U + V, E).

Definition 8.1.6. Let G = (E0, E1) be a graph. A matching is a subset F ⊆ E1 such that no
two elements of F share an endpoint. That is, all elements of E0 are endpoints of at most one
element of F.
Let G := (X + Y, E) be a finite bipartite graph. By an X-saturating matching, we refer to any
matching that covers every vertex in X.

Theorem 8.1.7. (Hall’s marriage theorem)
Let G := (X + Y, E) be a finite bipartite graph with bipartite sets X and Y. Let W ⊆ X. We

define nG(W) :=
⋃

w∈W
{y ∈ Y : (w, y) ∈ E}, that is, nG(W) consists of all the vertices in Y that

are linked with some w in W. Then the following are equivalent:
(i) There exists an X-saturating matching.
(ii) For any W ⊆ X, #W ≤ #nG(W).

Theorem 8.1.8. Let B be any finite dimensional C∗-algebra and let n ∈ N.
(i) Let u, v be unitary elements of B such that Cu(φu) ≈

Γn
Cu(φv). Then, there exists a unitary

element w ∈ B such that ∥wuw∗ − v∥ < 1/3n.
(ii) Let α : Γn ⊂ Lsc(T,N) −→ Cu(B) be a Cu-partial morphism such that α(1|T) = [1B]. Then
there exists a unitary uα ∈ B such that Cu(φuα) ≈

Γn
α.

Proof. Let B be any finite dimensional C∗-algebra and let n ∈ N. We first suppose that
B ≃ Ml(C) for some l ∈ N and the general case will follow as a consequence. We denote the
canonical 1-thin cover of the circle by {Uk}

3n

k=1.
(i) Let u, v be unitary elements of B such that Cu(φu) ≈

Γn
Cu(φv) in Lsc(T,N). Let X := sp(u) ⊆

T, Y := sp(v) ⊆ T and E := {(x, y) ∈ X × Y : ∥x − y∥ < 1/3n}). Let W be a finite subset of X.
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Arguing similarly as in the proof of Proposition 6.2.10), we know that there exists a minimal
element γ of Γn such that W ⊆ supp γ. We write V := supp γ. Observe that V has a finite
number of (open) connected components. First, suppose that V is an open connected set.
Now, let fγ be a continuous function over the circle with values in R+ such that supp( fγ) = V .

That is, [ fγ] = γ. Hence, there exist 1 ≤ r ≤ s ≤ 3n such that V := Ur ∪ (
s−1⋃

k=r+1
Uk) ∪ Us. We

consider V ′ := Ur−1 ∪ (
s⋃

k=r
Uk) ∪ Us+1 and we write γ′ := 1V′ ∈ Γn. Obviously, γ ≪ γ′ in Γn.

In fact, it is easy to see that γ′ = min{h ∈ Γn | γ ≪ h}. Again, let fγ′ be a continuous function
over the circle with values in R+ such that supp( fγ′) = V ′.
We know from hypothesis that [φu( fγ)] ≪ [φv( fγ′)] in N. Also, notice that card(W) = [φu( fγ)]
and [φv( fγ′)] ≤ card(nG(W)), -indeed sup

y∈V′
d(y,V) = 1/3n-. Thus we get that card(W) ≤

card(nG(W)) and hence condition (ii) of Theorem 8.1.7 holds for the finite bipartite graph
(X + Y, E). So there exists an X-saturating matching in E.
Since T is compact, we obtain that card(X) = card(Y) and hence any X-saturating matching
is in fact a perfect matching. Thus, there exists a bijection σ between X and Y such that
∥σ∥ < 3/3n. In other words, dU(u, v) < 1/3n and hence we conclude that there exists a unitary
w ∈ B such that ∥wuw∗ − v∥ < 1/3n. Finally, as mentioned above, V has a finite number of
(open) connected components so it is easy to check that (i) follows.

(ii) Let α be as in (ii). Write xk−1 := e2ikπ/3n
and yk := e2iπ/(2.3n)xk for any 1 ≤ k ≤ 3n.

Observe that Uk =]xk−1; xk[ and that yk is the center of Uk, for any 1 ≤ k ≤ 3n (convention:
x3n = x0). We will recursively build a unitary element of B that has the required properties:
Let u be an empty matrix. For every 1 ≤ k ≤ 3n − 1, set Wk := Uk ∪ Uk+1 ∪ {xk} and consider
p := α([ fUk]), q := α([ fUk+1]), r := α([ fWk]). Now, apply the following steps for 1 ≤ k ≤ 3n:
(1) u = u ⊕ diagq(yk).
(2) If p + q < r, then u = u ⊕ diagr−(p+q)(xk). (Convention, U3n+1 = U1.)
We denote the element obtained by uα. By construction, uα is a finite unitary matrix. Let
ν be the minimal element of Γn that contains sp(uα) and consider β := Cu(φuα). We al-

ready know that α([ fUk]) = β([ fUk]), for any k. Now consider V := U j ∪ (
l−1⋃

k= j+1
Uk) ∪ Ul.

Observe that V
⊔

(
l−1⋃

k= j+1
Uk) =

l−2⊔
k= j

Wk. Hence using (iii) of Definition 6.2.2, we get that

α(1V) +
l−1∑
j+1
α(1Uk) =

l−2∑
j
α(1Wk). The same holds for β.

Furthermore, by construction, we have that α(1Wk) ≤ β(1Wk), for any 1 ≤ k ≤ 3n. Note that
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α(1Wk) = β(1Wk) whenever Wk ⊆ supp ν. Putting everything together, we obtain

α(1V) +
l−1∑
j+1

α(1Uk) ≤ β(1V) +
l−1∑
j+1

β(1Uk).

Since N has cancellation, we deduce that
l−1∑
j+1
α(1Uk) =

l−1∑
j+1
β(1Uk) and we conclude that α(1V) ≤

β(1V) ≪ β(1V′), for any V ≪ V ′.
On the other hand, combining the fact that α(1Wk) = β(1Wk) whenever 1Wk ⊆ supp ν with the
argument above, we deduce that β(1V) = α(1V) whenever V ⊆ supp ν. In fact, observe that
β(1V) = β(1V∩supp ν) and finally compute β(1V∩supp ν) = α(1V∩supp ν) ≪ α(1V′), for any V ≪ V ′,
from which we conclude that α ≈

Γn
β.

Finally, we know that 1T is a compact element of Lsc(T,N) and hence β(1T) ≪ α(1T) and
β(1T) ≫ α(1T). Since ≪ and ≤ agree on N, we obtain β(1T) = α(1T). This scale condition
α(1T) = l gives us that uα ∈ Ml(C), which ends the proof. □

Remark 8.1.9. Observe that for two unitary elements u, v of a finite dimensional C∗-algebra
B, we have the following implications: dU(u, v) ≤ 1/3n =⇒ dCu(φu, φv) ≤ 1/3n =⇒

Cu(φu) ≈
Γn−1

Cu(φv) =⇒ dU(u, v) < 1/3n−1. Thus, we conjecture that dU(u, v) = dCu(φu, φv).

Corollary 8.1.10. Let A := lim
→n

(An, ϕnm) be a (unital) AF algebra. Let u, v be unitary elements
of A such that Cu(φu) = Cu(φv). Then u ∼aue v.

Proof. Let u, v be unitary elements of A such that Cu(φu) = Cu(φv). One can check that we
can find two unitary elements um, vm of Am for some m ∈ N, such that ∥ϕm∞(um)−u∥ < 1/(2.3n)
and ∥ϕm∞(vm) − v∥ < 1/(2.3n).
Since dCu(ϕm∞ ◦ φum , ϕm∞ ◦ φvm) ≤ dCu(ϕm∞ ◦ φum , φu) + dCu(φu, φv) + dCu(φv, ϕm∞ ◦ φvm), we
deduce that dCu(ϕm∞ ◦ φum , ϕm∞ ◦ φvm) < 2/(2.3n) = 1/3n.
By Proposition 6.2.10, we know that Cu(ϕm∞ ◦ φum) ≃

Γn
Cu(ϕm∞ ◦ φvm) and using Lemma 6.2.9,

we get that Cu(ϕm∞ ◦ φum) ≈
Γn−1

Cu(ϕm∞ ◦ φvm). Now we apply Theorem 8.1.2: there exists

some p ∈ N such that Cu(ϕmp ◦ φum) ≈
Γn−2

Cu(ϕmp ◦ φvm). As stated in Remark 8.1.9, this finally

gives us that dU(ϕmp(um), ϕmp(vm)) < 1/3n−2. Thus, there exists a unitary w ∈ Ap such that
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∥Ad(w) ◦ ϕmp(um) − ϕmp(vm)∥ < 1/3n−2. Now we obtain:

∥Ad(ϕp∞(w)) ◦ u − v∥ ≤ ∥Ad(ϕp∞(w)) ◦ u − Ad(ϕp∞(w)) ◦ ϕp∞(ϕmp(um))∥

+ ∥Ad(ϕp∞(w)) ◦ ϕp∞(ϕmp(um)) − ϕp∞(ϕmp(vm))∥

+ ∥ϕp∞(ϕmp(vm)) − v∥

< 1/3n + 1/3n−2 (ϕp∞ is a contraction)

∥Ad(ϕp∞(w)) ◦ u − v∥ < 2/3n−2.

We conclude that φu ∼aue φv. Equivalently, u ∼aue v. □

8.2 An example in C[0, 1] ⊗ M2∞

8.2.1. In this section, we exhibit an example in a rather simple setting. We will construct two
unitary elements of C[0, 1] ⊗ M2∞ such that Cu(φu) = Cu(φv) but u and v are not approxi-
mately unitarily equivalent. This shows that more information is needed in order to extend the
classification results of Section 8.1 to a larger class than AF algebras.

8.2.2. Let us first make precise the setting we will be working in. We refer the reader to Chap-
ter 4 for definitions and properties regarding UHF algebras. Consider the supernatural number
of infinite type 2∞ and its associated UHF algebra M2∞ := lim

−→n
(

n
⊗

k=0
M2(C), ψnm), where ψnm :=

id ⊗ 12m−n . Write ϕnm := idC[0,1] ⊗ψnm. It is trivial to see that lim
−→n

(C[0, 1] ⊗ (
n
⊗

k=0
M2(C)), ϕnm) ≃

C[0, 1] ⊗ M2∞ . We will now construct recursively unitary elements in C[0, 1] ⊗ M2∞ that will
be our counter example.

Set as a convention
0
⊗

k=0
M2(C) ≃ C. Define A := (C[0, 1] ⊗ M2∞ , ϕn∞). For any n ∈ N, consider

hn := diag(k/2n)2n−1
k=0 . It is clear that hn is a positive element of

n
⊗

k=0
M2(C). Now define wn :=

e2iπhn . It is also clear that wn is a unitary element of
n
⊗

k=0
M2(C). Observe that for any n ∈ N,

there exists a unitary permutation pn of
n+1
⊗

k=0
M2(C) such that ∥pnψnn+1(hn)p∗n − hn+1∥ ≤ 1/2n.

Define h′0 := h0 and h′n := pn−1hn p∗n−1 for any n > 0.
We now compute that ∥ψn+1n(h′n) − h′n+1∥ ≤ 1/2n and hence, (ψn∞(h′n))n is a Cauchy sequence.
So it converges towards a positive element h ∈ M2∞ . Now write w′n := e2iπh′n . Using functional
calculus, we obtain that (ψn∞(w′n))n converges towards w := e2iπh. It is clear that w a unitary
element w ∈ M2∞ and observe that sp(w) = T.
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Now write g1 := 1|[0,1] and g2 := id[0,1]. Define u := e2iπg1 ⊗ w and v := e2iπg2 ⊗ w. Also
define un := e2iπg1 ⊗ w′n and vn := e2iπg2 ⊗ w′n.
Notice that we can think of u and v as unitary elements of C([0, 1],M2∞) (respectively un, vn

in C([0, 1],
n
⊗

k=0
M2(C))). Indeed:

u : [0, 1] −→ M2∞ v : [0, 1] −→ M2∞

t 7−→ w t 7−→ e2iπt.w

Besides, since e2iπt.e2iπh = e2iπw.e2iπt for every t ∈ [0, 1], we can even rewrite v(t) = e2iπ(h+t).
We now need to check that u, v as constructed are unitary elements of A with the required
properties. We claim the following:

Claim 1: Cu(φu) = Cu(φv).
Claim 2: u is not approximately unitarily equivalent to v.

Proof of Claim 1: In the first place, we will prove that dCu(φun , φvn) ≤ 1/2n+1. Observe that
un, vn are unitary elements of C([0, 1],

n
⊗

k=0
M2(C)) and that Cu(φun),Cu(φvn) : Lsc(T,N) −→

Lsc([0, 1],N). Thus, Cu(φun)(1|U),Cu(φvn)(1|U) ∈ Lsc([0, 1],N) for any U ∈ O(T). Since the
order is pointwise in Lsc([0, 1],N), we obtain dCu(φun , φvn) = sup

t∈[0,1]
dCu(φun(t), φvn(t)).

On the other hand, un(t), vn(t) are diagonal unitary matrices in
n
⊗

k=0
M2(C), we can picture them

as 2n points of T -consisting of the elements of the diagonal-. In fact, for any U ∈ O(T), the
natural numbers Cu(φun)(1|U)(t),Cu(φvn)(1|U)(t) correspond to the number of diagonal entries
of un(t), vn(t) that belong to U.
Thus, we obtain that dCu(φun(t), φvn(t)) := max

i, j
{ ∥(un(t))ii − (vn(t)) j j∥T }. By construction, we

compute that sup
t∈[0,1]

dCu(φun(t), φvn(t)) = 1/2n+1 and we deduce that dCu(φun , φvn) ≤ 1/2n+1.

Let ϵ > 0. We know that there exists n ∈ N such that ∥ψn∞(w′n) − w∥ < ϵ/2, and hence
∥u − e2iπg1 ⊗ ψn∞(w′n)∥ < ϵ/2, respectively v, g2. Now, we have:

dCu(φu, φv) ≤ dCu(φu, φe2iπg1⊗ψn∞(w′n)) + dCu(φe2iπg1⊗ψn∞(w′n), φe2iπg2⊗ψn∞(w′n)) + dCu(φe2iπg1⊗ψn∞(w′n), φv)

≤ ϵ/2 + dCu(φun , φvn) + ϵ/2 (ϕn∞ is a unital isometry)

dCu(φu, φv) ≤ ϵ + 1/2n+1.
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Claim 1 follows by making n tend to∞.

Before proving Claim 2, we will first recall the definition of a determinant defined for C∗-
algebras in [38] and some more properties that can be found in [51] and [74].
We also recall that for a (multiplicative) group G, a commutator is an element of the form
[g, h] := ghg−1h−1. We usually write DG the normal subgroup of G generated by the commu-
tators of G.

Lemma 8.2.3. Let A be a separable unital C∗-algebra of stable rank one. Then:
(i) DU(A) ⊆ U0(A).
(ii) u ∼aue v implies that u ∼h v.
(iii) 0 −→ U0(A)/DU(A)

i
−→ U(A)/DU(A)

π
−→ K1(A) −→ 0 is a split-exact sequence in

AbGp.

Proof. All of these are to be found in [74, Section 3]. We still give a proof, for the sake of
completeness. (i) Observe that(

uvu−1v−1 0 0
0 1 0
0 0 1

)
=

(
u 0 0
0 u−1 0
0 0 1

)(
v 0 0
0 1 0
0 0 v−1

)(
u−1 0 0
0 u 0
0 0 1

)(
v−1 0 0
0 1 0
0 0 v

)
From which we deduce DU(A) ⊆ DU0(M3(A)). On the other hand, since A has stable rank
one, we know that U(A)/U0(A) ≃ K1(A) (see Proposition 1.1.17). Thus we can find u0, v0 ∈

U0(A) such that π(u0) =
(

u 0 0
0 u−1 0
0 0 1

)
, π(v0) =

(
v 0 0
0 1 0
0 0 v−1

)
which ends the proof.

(ii) Let u ∼aue v. We can find a unitary w such that ∥u − wvw∗∥ < 2. We get that u ∼h

wvw∗. Going to matrices, we have in M2(C): ( u 0
0 1 ) ∼h ( wvw∗ 0

0 1 ) ∼h ( v 0
0 ww∗ ). Finally using that

U(A)/U0(A) ≃ K1(A) again, we conclude that u ∼h v inU(A).
(iii) Injectivity of i is trivial. Using (i), surjectivity of π becomes clear as well. We also have
im(i) ⊆ ker(π). We now have to check that ker(π) ⊆ im(i). Let [u] ∈ ker(π) and let u be a
representative of [u]. Since [u] ∈ ker(π), we have that u ∼h 1, that is, [u] ∈ U0(A)/DU(A) =
im(i). □

Definition 8.2.4. [38, Section 2]
Let A be a (unital) C∗-algebra. We define the universal trace on A as the quotient morphism
Tr : A −→ Aq := A/[A, A]. We extend this map to M∞(A) and we define

Tr : K0(A) −→ Aq

[e] 7−→ Tr(e)
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We finally call the de La Harpe-Skandalis determinant associated to Tr, the group homo-
morphism ∆Tr : Gl0

∞(A) −→ Aq/Tr(K0(A)) such that ∆Tr(e2iπy) = [Tr(y)] for all y ∈ M∞(A).
Moreover, DGl0

∞(A) ⊆ ker(∆Tr).

Corollary 8.2.5. Let u, v be elements ofU0(A) such that u ∼aue v. Then ∆Tr(u) = ∆Tr(v).

Proof. Let us first show that ∆Tr is constant on ∼ue-classes of U0(A). Let u ∈ U0(A) and
w ∈ U(A). Since wuw∗ ∈ U0(A), we easily see that wuw∗u∗ = wuw−1u−1 ∈ DU(A) ∩U0(A).
We also know that DU(A) ∩U0(A) ⊆ DU0(M3(A)) ⊆ DGl0

∞(A) ⊆ ker(∆Tr). We deduce that
∆Tr(wuw∗u∗) = 0. That is, ∆Tr(wuw∗) = ∆Tr(u). Arguing similarly, we extend our result to
∼aue-classes ofU0(A). □

8.2.6. Proof of Claim 2: Let us compute ∆Tr(u) and ∆Tr(v). Notice that M2∞ has a unique trace,
that happens to be the universal trace. That is, (M2∞)q ≃ C. We can then describe Aq ≃ C[0, 1]
by sending f ∈ A to (t 7−→ [ f (t)](M2∞ )q) ∈ C[0, 1]. Moreover, we have K0(M2∞) ≃ Z[1

2 ] and
hence, K0(A) ≃ {k.1|[0,1], k ∈ K0(M2∞)} ≃ Z[ 1

2 ].
Putting it all together, we get that Tr(K0(A)) ≃ {k.1|[0,1], k ∈ Z[1

2 ]}. So we finally have
Aq/Tr(K0(A)) ≃ C[0, 1]/({k.1|[0,1], k ∈ Z[ 1

2 ]}) ≃ C([0, 1],C/Z[ 1
2 ]).

Now we compute ∆Tr(u) = (t 7−→ [Tr(hw)]C/Z[ 1
2 ]) and ∆Tr(v) = (t 7−→ [Tr(hw)+ t]C/Z[ 1

2 ]). They
are clearly distinct. The result follows using the contraposition of Corollary 8.2.5.

8.3 An example in the Jiang-Su algebra

8.3.1. In this third section, we exhibit two unitary elements of the Jiang-Su algebra Z that
agree at level of Cu but fail to be approximately unitarily equivalent. We first give a definition
and usual properties of Z. We refer the reader to [68], [43] for more details on the Jiang-Su
algebra and to Paragraph 4.4.1 for the construction of NCCW 1.

8.3.2. Dimension-drop interval algebras:
A generalization of Elliott-Thomsen algebras gave rise to what is commonly known as dimen-
sion drop interval algebras: Let p, q be natural numbers. We define Zpq := A(Mp ⊕ Mq,Mp ⊗

Mq, π0 ⊗ 1q, 1p ⊗π1), where π0 : Mp ⊕Mq −→ Mp and π1 : Mp ⊕Mq −→ Mq are the respective
projections on each component of the direct sum. In case p and q are coprime, Zpq is called a
prime dimension drop algebra.
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Write d :=gcd(p, q). By Proposition 4.4.4, we know that:

K0(Zpq) ≃ Z Cu(Iq) ≃ { f ∈ Lsc([0, 1],N) | f (0) ∈ qN, f (1) ∈ pN}
K1(Zpq) ≃ Z/dZ ≃ { f ∈ Lsc([0, 1], 1

pqN) | f (0) ∈ 1
pN, f (1) ∈ 1

qN}

The Jiang-Su algebra:
The Jiang-Su algebra, commonly denoted by Z, is an infinite-dimensional unital (separable)
strongly self-absorbing simple C∗-algebra of stable rank one. Z has a unique tracial state and
the same K-Theory as C. It was first constructed in [43].

A way to construct Z is using results of [68, Theorem 3.4]: Let p, q be infinite supernatu-
ral numbers that are coprime. Then there exists a trace-collapsing unital endomorphism on
Zpq := lim

−→n
(Zpnqn , in). That is, a unital endomorphism such that τ ◦ φ = τ′ ◦ φ for any pair of

tracial states τ, τ′ on A.
Then Z ≃ lim

−→
(Zpq, φ), where φ is any trace-collapsing unital endomorphism on Zpq. For in-

stance, one can writeZ ≃ lim
−→

(Z2∞3∞ , φ). Finally, by [43, Theorem 1] and by [3, Section 4], or
else [4, §7.6.1] and Proposition 4.1.1, we have:

K0(Z) ≃ Z Cu(Z) ≃ N⊔]0,∞]
K1(Z) ≃ 0 Cu1(Z) ≃ (N⊔]0,∞]) × {0}

Theorem 8.3.3. (Riesz-Markov - see [71, §6.3] for more details on Radon measures)
Let X be a Hausdorff and locally compact space. Let τ : C0(X) −→ C be a tracial state.
Then there exists a unique extended Borel measure µ : B(X) −→ [0,∞] such that µ is finite
on compact subsets, µ(A) = sup{µ(K),K ⊆ A compact} for any Borel set A ⊆ X and τ( f ) =∫

X
f dµ for any f ∈ C0(X).

Definition 8.3.4. Let h be a self-adjoint element of Z ⊗ K . Using the GNS representation,
we define τh := τ|C∗(h), where τ is the unique tracial state on Z. From Riesz-Markov theorem
we can consider µh, the unique measure obtain from τh. Also define dτ(h) := µh(sp(h) \ {0}).

Proposition 8.3.5. [71, Lemma 6.10], [68, Remark 6.1]
Let h be a self-adjoint element ofZ⊗K . Then:
(i) dτ( f (h)) = µh(supp( f )) for any f ∈ C0(sp(h) \ {0}).
(ii) dτ(h) = lim

n
τ(h1/n) = lim

n

∫
(sp(h)\{0})

t1/ndµh. In fact, dτ(h) is a supremum whenever h ≥ 0.
(iii) For any U ⊆ sp(h) \ {0} open, we have µh(U) = dτ( f (h)) for any f such that supp( f ) = U.
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Theorem 8.3.6. (see e.g [4, §7.3.2])
Consider S := N⊔]0,∞] with + coming from the one in R+. Consider the usual order in both
disjoint sets and add a mixed-order as follows: For any n ∈ N, write xn := n ∈]0,∞]. Then
for any ϵ > 0, we have xn ≤ n ≤ xn + ϵ.
Then S is a totally ordered Cu-semigroup whose compact elements are exactly N. In fact, we
have the following Cu-isomorphism:

Cu(Z) −→ N⊔]0,∞]

[a] 7−→

 n ∈ N, if a ∼Cu diagn(1Z, ..., 1Z)
dτ(a) ∈]0,∞] else

Proposition 8.3.7. Let A be a C∗-algebra and let h be a self-adjoint element of A. Then
C∗(e2iπh) ⊆ C∗(h). If moreover sp(e2iπh) , T, then C∗(e2iπh) = C∗(h).

Proof. First observe that for any (positive) morphism f : T −→ C, there exists a (positive)
morphism g : [−1; 1] \ {0} −→ C such that the following diagram is commutative:

T
f // C

[−1; 1] \ {0}

e2iπ

OOOO

∃g

99

Conversely, for any (positive) morphism g :] − 1; 1[\{0} −→ C, there exists a (positive) mor-
phism f : T \ {∗} −→ C such that the following diagram is commutative:

[−1; 1] \ {0}
g // C

T \ {∗}

arg
OOOO

∃ f

99

Now let h be a self-adjoint element of A. Since sp(h) ⊆ [−1; 1] \ {0} ⊆ R and the exponential
map is a continuous map from R to T, by functional calculus we obtain e2iπh ∈ C∗(h). Con-
versely, since the argument map, inverse of the exponential map, is well-defined from T \ {∗}
to sp(h) ⊆ [−1; 1] \ {0}, whenever sp(e2iπh) ⊆ T \ {∗}, we obtain that h ∈ C∗(e2iπh), which ends
the proof. □

Definition 8.3.8. Let k ∈ N and let hk be a positive element ofZ such that sp(hk) = [0, k] and
µk = m/k, where m is the Lebesgue measure on R. We define uk := e2iπhk . Observe that uk is a
unitary element ofZ whose spectrum is T.
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Theorem 8.3.9. For all k, l ≥ 1, we have that Cu(φuk) = Cu(φul). Moreover, if k ≡ l + 1
mod 2, then φuk /aue φul .

Proof. Since Lsc(T,N) is generated by {1|U}U∈O(T), we only need to check that Cu(φuk)( f ) =
Cu(φul)( f ) for any f ∈ C(T)+. Let k ∈ N, let f ∈ C(T)+ and let uk be the unitary defined in
Definition 8.3.8. We are going to show that [ f (uk)] does not depend on the k chosen and the
result will follow.
By Theorem 8.3.6, we know that [ f (uk)] ∈ {0, 1c}⊔]0, 1nc]. Moreover, [ f (uk)] = 0 if and only
if f (uk) = 0Z. Equivalently, f = 0|T and [ f (uk)] = 1c if and only if f (uk) = λ1Z, that is
f = λ1|T.
Now suppose that [ f (uk)] ∈ ]0, 1nc]. From the proof of Proposition 8.3.7, we know that there
exists gk : sp(hk) \ {0} −→ R+ such that f (uk) = gk(hk) (respectively gl, hl and ul). Moreover,
we know that [ f (uk)] is not a compact element and hence [ f (uk)] = dτ( f (uk)).
Define S := {t ∈]0, 1] : f (uk) , 0}. We get that dτ(gk(hk)) = µhk(supp gk) = kµhk(S ) = m(S ).
We deduce that dτ(gk(hk)) does not depend on the k chosen, which implies that [ f (uk)] does
not depend on the k chosen. Thus, we get Cu(φuk) = Cu(φul).
Now, let us compute ∆τ(uk) = [τ(hk)]Zq/τ(K0(Z)). In fact, ∆τ(uk) = [τ(hk)]C/Z and τ(uk) =∫ k

0
(t/k)dm = k/2. We obtain that ∆τ(uk) , ∆τ(ul) whenever k ≡ l + 1 mod 2. The conclusion

follows using the contraposition of Corollary 8.2.5. □

Proposition 8.3.10. We claim that the positive element hk described in Definition 8.3.8 exists
inZ+, for any k ∈ N.

Proof. We look for a positive element h inZ with sp(hk) = [0, k] and µk = m/k. Equivalently,
we look for a ∗-homomorphism φh : C0(]0, k]) −→ Z.
Consider the following assignment:

α : Lsc(]0, k],N) −→ N
⊔

]0,∞]

f 7−→
k∫

0
( f /k)dm

We integrate step-maps on a compact set. One can then check that α preserves addition, order,
and suprema of increasing sequences. Also, by Lemma 6.1.14 we obtain that α preserves ≪
and hence α is a Cu-morphism.
By [64, Theorem 2], we know there exists φ : C0(]0, k]) −→ Z such that Cu(φ) = α which
corresponds to a positive element h. Finally, we have to check that h has the required prop-
erties. It is clear that sp(h) =]0, k]. Now let U ⊆ ]0, k] be an open set, and let f ∈ C0(]0, k])
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such that supp( f ) = U. We know that dτ( f (h)) = µh(U). Further, dτ( f (h)) = [ f (h)]Cu, hence

µh(U) =
k∫

0
([ f ]/k)dm = m(U)/k, which ends the proof. □

Corollary 8.3.11. Cu does not classify unitary elements ofZ.
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